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PREFACE

This thesis is intended to lay the groundwork for the

construction of simulators of the military planning

process. The techniques used are those of artificial

intelligence. The conceptual framework of the simulator

is developed, and then an example system is implemented

using the ROSS programming language in order to

demonstrate certain aspects of the design.

The example system (SAMPLE) performs several of the

decision tasks required of an Army Hawk (a low to medium

Ialtitude surface-to-air missile system) battalion

commander when choosing emplacement sites for his firing

batteries. The decision processes implemented in the

-~ example are only an approximation of those used by the

commander, and as such are somewhat oversimplified. The

intent of the example is to demonstrate the methodology of

transferring the real-world expertise of the commander

into a computer simulation, not to provide an accurate

simulation of the emplacement task. We are not Hawk

commanders: we do not have the expertise.

We would like to take this opportunity to thank those

*who helped us the most: our wives -- Cherry and Laura.

Without their loving support and tolerance, this thesis
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ABSTRACT

' -Planning, particularly military planning, is viewed

as the integration of subplans, each ofwhich serves to

accomplish a subgoal of the original goal. This model

serves as the conceptual framework of the planning task

simulator. The simulator is an environment in which task

specialists, modeled by expert systems, are used to

formulate courses of action to meet the given subgoals.

'I

!i' M Portions of the simulator have been implemented as a

demonstration of the feasibility of this approach, as well

as a guide for future developers. The language used was

ROSS, an object-oriented simulation language embedded in

Franz Lisp or MacLisp and developed by the Rand

Corporation. The implementation was done on the Air Force

Institute of Technology's Scientific Support Computer, a

VAX 11/780. The dialect used was the Franz Lisp version

of ROSS.

Several system functions such as data storage and

retrieval mechanisms, a communications channel model,

design aids, and debugging aids were implemented to

. -" provide a workbench for the development of an extended

viii



simulator. One task specialist was also constructed: a

small-scale expert system that performs the planning

involved in selecting emplacement sites for Hawk

medium-range surface-to-air missile (SAM) batteries in

direct support of an Army division in the defensive

posture.

Although the implemented task ipecialist is highly

constrained and only an approxima )n of the real-world

counterpart, it serves to demonstrat. the ease with which

task specialists can be constructed. The transparency,

modularity, and power of ROSS, with the additional system

functions, provides a robust environment in which to

simulate real-world planning algorithms.

ix
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CHAPTER ONE

INTRODUCTION

1.1. PROBLEM DEFINITION

Both Eastern and Western analysts agree that success

on the modern battlefield relies on effective military

* planning. Because of the increasing complexity of

expected battlefield scenarios and the range of

specialized knowledge required of all commanders,

effective planning is becoming increasingly difficult.

Three areas of current research are potentially capable of

aiding battlefield commanders.

First, several Air Force programs are currently

developing automated decision aids for military planning

tasks. Typically, such aids serve a data reduction

function. Second, several researchers have developed

models of the planning process. Study of these models has

led to the study of planning heuristics designed to

improve the effectiveness of human planners. Third.

automated systems exist that simulate the problem-solving

processes of human experts within a limited domain; such

automated systems are known as "expert systems." We

believe that the integration of these three research areas

could lead to the development of a planning task

I -1



simulator, in which military task specialists, modeled by

expert systems, can be used to formulate courses of action

aimed at achieving assigned military objectives.

Such a simulator would be an effective decision aid

for the battlefield commander. Not only would it serve

the data-reduction function of current decision aids, but

would also embody much of the expertise of the commander's

*specialization. The simulator would provide the most

reasonable alternatives to the commander, who could then

focus his talents on only promising solutions.

Additionally, the explanation capabilities possible in

expert systems could provide the commander with explicit

ID illustrations of the strong and weak points of the

alternatives, and the reasoning used in selecting one over

the others.

The intent of this thesis is to demonstrate one

possible approach to the implementation of such a planning

task simulator. To this end, we have defined the

following three thesis objectives:

1. Develop a set of techniques and representation
schemes appropriate for a planning task simulator.

2. Develop a design procedure for implementing a planning
task simulator.

3. Demonstrate the procedure, techniques, and
representation schemes by designing and implementing
an example task simulator that performs the site
selection task for a low-to-medium-altitude,
radar-guided surface-to-air missile (SAM) system.

-2



Chapter Three will define the programming techniques

and representations necessary to implement the planning

task simulatu,. Chapter Four presents the design

procedure used to construct the simulator. The

demonstration system's general design is presented in

Chapter Five, and Chapter Six gives the detailed design.

1.2. SCOPE

The design methodology incorporates the techniques of

artificial intelligence. According to Patrick Winston,

"Artificial Intelligence is the study of ideas which

Q enable computers to do the things that make humans seem

intelligent" (Winston, 1979: 1). A complete system, given

a well-defined doctrinal procedure for planning a specific

military task, will be capable of automatically predicting

a course of action indistinguishable from that which a

human planner would arrive at if he used the same

procedure.

The system design concepts are illustrated by the

design and implementation of a small-scale expert system

which models some of the planning activities involved in

emplacing Hawk surface-to-air missile systems. By

"small-scale" we mean that only those elements of the

planning process which are necessary to solve the problem

I - 3



are implemented; several features normally associated with

expert systems are not implemented. The expert system is

to serve as a guide: an example of modeling military

planning activities. our primary goals in developing this

example system are to make it simple enough to clearly

illustrate our design philosophy, and yet complex enough

to demonstrate that real-world problems can be solved by

such a system. We hope that the techniques and design

tools developed in this thesis will aid future researchers

in the development of planning simulators for other

military task domains.

All automated systems require some sort of interface

Qbetween the computer program and the user. Expert

systems generally incorporate a complex input/output

package, typically including computer-generated graphics,

natural language communication with the user, or both.

Such systems also incorporate a query mechanism which

* allows the user to trace the reasoning steps followed in

generating a given output. The query mechanism is

sometimes quite complicated, allowing interactive editing

and querying of the system knowledge base. Implementation

of such interfaces is beyond the scope of this effort.

*Typical expert systems that include these interfaces

require approximately five man-years to design and

implement (Davis, 1982: 10). Instead, a simple

input/output package, based on a menu-driven input format

.44



and tabular output has been implemented. A simple trace

mechanism is also included to perform the query function.

A complete planning simulator would consist of a

number of task specialists operating within an overall

planning model. A complete implementation of the overall

model is not attempted; only those modules required to

connect a single task specialist (the example expert

system) to the user are implemented. The components of

the simulator that integrate the outputs of several task

specialists have not been implemented.

We will approach the use of terrain data by

0 requesting information from a map-reader module, using

symbolic descriptions of the information desired. For

this effort, the map-reader will ask the user for the

information being sought, and a human map-reader will have

to abstract the data and determine the reply. However,

the region-finding algorithms and methods of determining

connectivity that are required to abstract a digital map

into useful terrain representations are available and

discussed in the Handbook of Artificial Intelligence

(Fiegenbaum, 1981). We are convinced of the

implementability of the terrain-data-base to

terrain-abstraction conversion and automation of the

map-reader function, provided the mass-storage and related
" vb.
* computational details can be resolved.

1i-5
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As stated in the problem definition, this thesis

demonstrates one possible approach to the implementation

of a planning task simulator. The thesis accomplishes the

following three objectives:

*1. Development of a set of techniques and repre-
sentation schemes appropriate for a planning task
simulator.

2. Development of a design procedure for implementing a
planning task simulator.

*3. Demonstration of the procedure, techniques, and
N representation schemes by the design and implemention

of an example task simulator.

The example system is constructed to operate in a

manner similar to the planning pr ocedures of the human;

that is, the steps that the system takes in working

through the problem are English-like and straight-forward

(as opposed to reams of magical code such as an operations

research project). Additionally, the task algorithm we

have used is intentionally simplistic and tightly

constrained. This was done to present a clear

demonstration of our design procedure and the use of an

assortment of techniques and representations, without

focusing attention on the details of the task itself. We

hope that this approach will provide future simulator

developers with a rich example to follow in the

implementation of their systems.

-6



1.3. ASSUMPTIONS

The following assumptions are incorporated into the

solution of the problem:

1. Within limited domains, human problem-solving activity

may be successfully modeled by a computer program.

This is the fundamental assumption underlying the

current research in expert systems. The demonstrated

performance of several available expert systems tends

to support the validity of this assumption

(Feigenbaum, 1981: Vol 2). The term "limited

domains" refers to the present inability of computer

P scientists to develop an automated problem solver

that can operate in more than one field of expertise.

This inability limits the scope of any project based

on current expert systems. For example, a military

planning simulator can not be extended into a

economic forecaster without a major rework.

2. Military planning involves the coordination of and

compromise among several independent task

specialists. This assumption is the basis of the

Hayes-Roth planning model: that planning can be

accomplished through the coordinated efforts of

specialists, each working on a particular part of the

problem (Hayes-Roth, 1980). The observed

1-7
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specialization of current planning staffs justifies

the inclusion of this assumption. Adoption of this

model requires the future development of a mechanism

to implement the coordination and compromise

function.

3. Military planning is significantly constrained by

national policy, established doctrine, and accepted

practices. These constraints are what make military

planning activities a "limited" domain and thus

facilitate the computer simulation of the activity.

1-8
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CHAPTER TWO

BACKGROUND

2.1. PLANNING

2.1.1. Definition of Planning

Planning is defined as the formulation of an intended

-/ course of action aimed at achieving a goal (Hayes-Roth,

1980). This definition implies that planning may be

decomposed into three components: the goal, the course of

action, and the formulation of the specific steps of the

course of action.

The goal is simply a desired result that the planner

is trying to achieve. For all except the simplest of

- goals, the course of action will likely consist of a

4- sequence or set of steps which must be performed to reach

the goal. Each step may then in turn be viewed as the

goal of a simpler "subplan". The integration of these

.4 subplans into a coherent effort to reach the ultimate goal

then completes the planning process.

4 This is not meant to imply that every goal can be

factored into a set of subgoals. However, pursuit of a

.. * non-factorable goal of any complexity will quickly become

I l



an unmanagable task for a human planner if he is expected

-N to produce a solution that is correspondingly complex and

non-algorithmic (not step-by-step in nature). Some

planning tasks are solved through flashes of insight, but

the majority are solved by "divide and conquer"

techniques: abstraction, bugging, and psuedo-reduction.

Appendix A contains an explanation of these techniques as

applied to human planning. Even if the goal is not

cleanly factorable into subgoals, there are still certain

items of interest that are dominant. The dominant items,

whether drivers or constraints, should be used to shape

the solution, and the lesser items to refine the details.

There may be conflicts, but these are introduced in the

course of making a first-cut approximation to a solution.

The techniques for resolving certain classes of these

conficts and the methods of selecting an approach to the

problem are classified as tactics of "meta-planning".

Meta-planning is discussed in Secton 2.2.1. and in

Appendix A.

Study of the human planner reveals that the good

(robust) planner has at his disposal a variety of

techniques with which to approach the task (Sacerdoti,

1979). He is opportunistic (Hayes-Roth, 1980) and chooses

the technique to fit the problem. The good planner has,

as well as develops, heuristics to guide the selection of

the techniques. A computer program, intended to be a

II - 2



robust planner, will also require these properties. it

must have the capability to recognize the subgoals and

evaluate the importance of interesting data. It will then

decide which technique or techniques to apply and begin

the search for a solution. The program or planner must

also develop metrics with which to evaluate the course of

the search. To effectively plan and evaluate a course of

action, even a rough sketch of one, the planner must have

a large knowledge base extending the breadth of the

planning domain, with sufficient detailed knowledge to

satisfactorily assure itself of the feasibility of the

implementation.

Many planning tasks require a great deal of

specialized knowledge in order to form a solution. In the

case of the human, such tasks are delegated to more

specialized planners. The manager or executive only needs

*to know that the solution will be found, and who can find

-.- it. He delegates the task, and is then free to work in

his proper domain, which is a broader, but shallower piece

of the "big picture". The person who received the

delegated task presumably is an expert in the

specialization, and we shall refer to him as a "task

specialist".

As the tasks become increasingly narrow and

* ~ specialized, the techniques that can be applied also

11 3
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become less general. Often, the specialist uses the same

procedure with nearly every task assigned him, since the

tasks a specialist receives are usually similar. These

often-used, cut-and-dried procedures are the kinds

currently being implemented with expert systems. In this

light, an expert system is simply an implementation of the

abilities of the task 'specialist, within a very limited

problem domain, and with a limited knowledge base.

The manager, on the other hand, is given tasks that

are not as well-defined and require broader knowledge. He

knows what resources and experts are available, and

integrates their results into a course of action using the

0 techniques previously mentioned. For the most part though,

managers are middle managers. That is, they delegate work

to those they manage, but at the same time receive their

tasks from higher authority. From the viewpoint of his

superior, the middle manager is a specialist: specializing

in planning a portion of the subtasks that the superior

can generate when formulating his own plans. This

hierarchical structure can extend indefinitely, with each

person being viewed by his subordinates as a more general

planner, and by his superiors as a specialist in a

narrower planning domain. (In this instance, the terms

subordinate and superior refer to the chain of delegation

of components of the problem.)

II-4



2.1.2. Military Decision-Making as a Planning Function

military commanders at all levels are required to

produce decisions which result in the accomplishment of

military objectives. These commanders may have

subordinate units that provide the input data or develop

possible courses of action needed to formulate the overall

plan. The task of the commander then, is to convert the

* input data and list of alternatives into a decision on the

best approach to meeting his assigned objectives.

military decision-making, as just defined, is

therefore a planning function in the general sense. Yet,

0 several characteristics of military decision-making serve

to distinguish it from other forms of planning:

1. The military commander is responsible for developing
plans to meet goals often generated by higher
authority or the actions of the enemy (and not by the
commander himself).

2. military plans are often required under stringent
timing constraints. Additionally, commanders
frequently do not have the luxury of not making some
decision.

3. The possible courses of action that a commander may
pursue are often significantly restricted by national
policy, established practices, and military
doctrine.

4. While a commander may task subordinate units to help
produce a decision, the commander remains ultimately
responsible for his decision. Therefore, two types
of expertise are generally required ot all
commmanders:
a. Expertise in an assigned specialty area (naval

destroyer captain or an army tank commander, for
example).

b. Expertise in general resourse management and
-assessment of alternatives generated by

subordinates.

II-5
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The military planning environment therefore consists

of the integration and coordination of decision-making

L-. activities conducted at all command levels. Each unit

(person or group of persons) is required to accomplish its

assigned mission, and can in turn assign its subordinate

units certain portions of the task. Units also trade

information with other units not in the chain of command

(lateral communications). Military doctrine and

delegation of authority ensure that each unit has a

well-defined set of behaviors relating to received

tasking, generated orders, and lateral communications.

2.2. SUMMARY OF CURRENT KNOWLEDGE

2.2.1. General Planning

As previously stated, a plan is the course of action

formulated to achieve a goal. The most obvious property

of a plan is that a plan is the integration of a

- collection of subplans, each of which serves to achieve a

subgoal. When all subgoals are accomplished and conflicts

among them resolved, the original goal will have been

achieved.

II-6



Each subplan is in itself a plan, and so can be

further subdivided into smaller subplans. Eventually, the

plan will decompose into a collection or sequence of

simple and readily executable actions. Formulating this

collection into a workable course of action requires

ordering, combining, and compromising between the simple

actions. Compromise is necessary because, quite often,

actions aimed at achieving one subgoal conflict with the

- achievement of another. A general planner, one that does

not have a predefined task to accomplish, must have at its

disposal a set of tactics for resolving these conflicts

(or avoiding the generation of conflicts altogether). The

paper "Problem Solving Tactics" (Sacerdoti, 1979)

discusses a handful of approaches to producing workable

plans. These tactics are discussed in Appendix A.

This general problem-solving procedure of decomposing

the problem into subparts and then integrating the

subplans is powerful, in that it is applicable to a wide

variety of real-world situations. However, once a subgoal

has been adequately defined, it will probably be

advantageous to use a task-specialist to generate the

subplan. A specialist has a great deal of knowledge

relating to the particular subgoal; this expertise

includes heuristics -- time-tested methods of attacking

the particular problem. These heuristics serve to trim a

general-purpose planner into one that is tuned to the

II - 7



particular specialty, capable of producing good solutions

with less search (therefore, less computation) than the

general-purpose planner.

Specialists are used extensively in the

"opportunistic planning model" developed by Barbara

Hayes-Roth, et al. This model views planning as the

cooperative efforts of many independent plan specialists.

Each specialist makes tentative decisions about the plan

from the data it has on hand. The decision is posted on a

data structure common to all the specialists: the

blackboard. Through cooperation and transfer of

knowledge, a course of action is derived. This project

focuses on problems analogous to the naval tactical

planning problem: How should the decision-maker move

ships from their current locations to particular

task-force objectives? (Hayes-Roth, 1980).

The Hayes-Roth approach uses top-down and bottom-up

planning specialists. The top-down specialist generates

the subgoals from the given goal and directs the search

for the solution. Bottom-up specialists provide the

higher-level planners with data about execution details

which constrain the direction of the search. The term

"opportunistic" refers to the fact that there is no strong

predefined organization of planning activity. The

executive control process, which invokes and schedules the
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specialists is also opportunistic. This approach allows

the planning system to make use of all available

information to guide the search for the solution.

An alternative to the opportunistic planning model is

offered by Mark Stefik in his paper "Planning and

Meta-Planning" (Stefik, 1981). While the fundamental

concepts of the two approaches are very similar, the

implementations are different. The method put forth by

Stefik involves the use of a meta-planner to control the

activity of the other planning stages. A meta-planner is

a planner that determines how to formulate a plan.

Stefik's planning structure consists of planners whose

G- control and interactions are handled by meta-planners,

with meta-meta-planners (so to speak) controlling the

meta-planners, and so on. This is part of a line of

research aimed at enhancing the power of a problem solver

by allowing it to reason about its own reasoning process.

A comprehensive look at planning and meta-planning is

found in the book Planning and Understanding by Robert

Wilensky. According to Wilensky, meta-planning addresses

"the problems of goal interactions, and plan debugging and

modification" (Wilensky, 1983: 23). This level of

planning uses knowledge about the planning process itself,

in terms of meta-goals, meta-plans, and meta-themes.

Meta-goals are the goals of the process of planning. For

II - 9
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example, resolve conflicts" and "find a workable

solution" are meta-goals of the planning process.

Meta-plans are those plans and techniques that can be

applied to achieve the meta-goals. Meta-themes are the

situations that group the meta-plan and meta-goal

knowledge. The four meta-themes encountered by Wilensky

are:

1. Don't waste resources.
2. Achieve as many goals as possible.
3. Maximize the value of the goals achieved.
4. Avoid impossible goals.

Meta-planning is accomplished through the use of

specialists. Wilensky's meta-planning specialists are

called "meta-entities". Each meta-entity contributes

0 toward meeting a particular meta-theme. Using the

meta-themes as guidance, the complete planning structure

formulates the problem in terms of its subgoals, and then

solves the problem by solving for the subgoals and

integrating the partial solutions. Appendix A contains

more on planning and meta-entities.

2.2.2. Military Planning

In the middle ground between general-purpose planners

and special-purpose subplanners are planners that embody

portions of both. The military officer is one such

planner. He must have detailed knowledge relating to his
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* assigned duties. In other words, he must be an expert at

his job. Additionally, he must have knowledge of how he

fits into the "big picture" and enough general planning

ability to formulate his plan to fit in better with his

superior's other subplans. Finally, he must have enough

knowledge of his subordinates' duties and abilities to

avoid assigning tasks that they cannot accomplish, and the

general planning abilities to integrate the subplans from

'.4 his subordinates. These points illustrate the fact that a
-j

plan by one military planner can be a subplan to his

superior, and that a planner may delegate the development

of subplans to his subordinates.

G Since the simulator is intended to be generally

applicable to military planning, we must be able to

structurally model both Western and Eastern planning

activities. The book by Druzhinn (Druzhinn, 1972) is a

-." Soviet view of the military decision-making process. The

purpose of Concept, Algorithm, Decision, as stated in the

first chapter, is to contribute to the development of the

theory and technique of decision-making. Emphasis is

placed on the role of automation in the control and

management of military operations and of the intrinsic

capabilities of computer technology when applied to

military decision-making. The author develops a general

model of decision-making which is consistent with our

". simulator design.

~II - 11



Another viewpoint of the Soviet decision-making

process is put forward in the paper "Modeling Soviet

2Defense Decisionmaking" (Alexander, 1980). Alexander

describes the decision-making environment in terms of

"lactors". High-level actors have the authority to make

decisions and produce policy. They often face problems of

conflicting goals that require political action to

resolve. The low-level actors implement the actions

required by higher-level actors, and generate information.

They often face problems that require high-level solution

and put forward proposals, initiatives, and alternatives.

They generate conflict among themselves that must be

resolved by the political decisions of higher-level

actors.

The "behaviors" of high-level actors are dominated by

the influences of politics, personalities, values, and

national goals. Low-level actor behaviors are tightly

constrained by doctrine, bureaucratic processes, and the

decisions of the high-level actors. This is not to say

that low-level actors do not influence the decisions of

the high-level actors; on the contrary, they do influence

the decisions of the higher-level decision-makers through

the information, proposals, and alternatives they provide.

While this model is intended for the Soviet

decision-making process, it can be readily extended to

other decision-making environments (for example, U.S.)
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with a reordering of priorities and changes in the effects

of the influences.

2.3. OUR PHILOSOPHY

We hold that the same planning tactics being taught

humans can be implemented as behaviors of a generalized

planning system. Codifying the abilities to resolve

conflicts, evaluate interactions, abstract situations and

data, and intelligently change tactics mid-stream could

easily be dismissed as an impossible task: the mechanisms

used by the human planner are themselves poorly

understood. How could one expect to program a machine to

do it? However, progress is being made in defining the

actions taken by robust human planners and

4- problem-solvers, and as more is understood, more can be

incorporated into the simulator. In fact, judicious use of

the simulator can direct planning research since the

computer demands definition of much knowledge taken for

granted (common sense). In picking apart commom-sense

assumptions, one may find that the assumptions were in

fact only partially true, like any good heuristic. One of

the distinguishing features between good and poor planners

is the ability to recognize when the situation has

components that conflict with the common sense

assumptions. Poor planners don't question their
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* assumptions, and may not even know why the assumption

exists. Therefore, a thorough understanding of all

aspects of the problem domain, including the knowledge

taken for granted, is necessary for a good planner.

We have acknowledged the faqt that building a good

planning system is very difficult. This thesis is

intended to take a step in that direction and ease some of

the endeavor by providing an extensible, evolutionary

system that can grow as new tasks are defined. As

planning tactics are refined, they can be incorporated in

the higher-level generic planning procedures in a manner

like Wilensky's meta-entities. As new task specialists

are defined, they can be plugged into the system as the

low-level specialized planners.

We do not make the claim that this type of planning

system is capable of finding solutions to all planning

tasks, just those solvable by humans. As stated earlier,

this approach requires that complex goals be factored into

simpler subgoals: a "must" for the limited resources of

the human mind. To those who pose the question, "What

about the goal that cannot be factored into subgoals?", we

respond, "How would you achieve it?" In the answer lies

* the expertise. It is our belief that even that goal, upon

examination, has components that can be treated separately

-in a subgoal-like manner.

11 - 14
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CHAPTER THREE

PLANNING TASK SIMULATOR

* DESIGN TECHNIQUES

3.1. INTRODUCTION

This chapter is intended to define the programming

techniques, communications model, and the knowledge

representation schemes necessary to implement a military

planning task simulator. Chapter Four presents a design

procedure used to construct the simulator, while Chapters

Five and Six describe how this procedure was followed in

'I the design and implementation of an example simulator.

Because many of the concepts presented in this

chapter are more easily understood in the context of an

example, the discussion is purposefully brief; additional

information is presented in Chapters Five and Six, as well

as Appendix E.
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3.2. ROSS -- AN OBJECT-ORIENTED SIMULATION LANGUAGE

3.2.1. The Need for an Object-Oriented Language

Most, if not all, of the decisions made by a tactical

battlefield commander are "data-driven," in that the

possible alternatives the commander has to choose from are

highly constrained by the current battlefield situation,

available terrain, and reconnaissance information. There

is a correspondence between the data-driven nature of

planning tasks and the "trigger (message) /response

(behavior)" structure of object-oriented languages that

make them inherently well-suited for simulating such

tasks. Additionally, representing procedural knowledge

(task algorithms, e.g.) is extremely straightforward in an

object-oriented language. While production systems are

adequate for representing this procedural knowledge, an

object-oriented language can well represent both the

procedural knowledge (responses) and the declarative

knowledge (data). Therefore, an object-oriented language

is the natural choice for implementing a planning

simula~tor.
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3.2.2. ROSS

We have chosen ROSS as the implementation programming

language: an object-oriented language developed at the

RAND Corporation for the purpose of constructing

simulations. The language had its conceptual origins in

SMALLTA LK and DIRECTOR and is embedded in either MacLisp

or Franz Lisp (McArthur, 1982). It contains primitives

for symbolic pattern matching and provides for the

-: inheritance of both behaviors (responses to inputs --

procedural knowledge) and attributes (data -- declarative

knowledge). The object-oriented structure, near-English

programming syntax, extensibility, and ease of designing

with the language are the primary reasons we chose ROSS.

The principle programming construct in ROSS is the

"2actor", which is a set of Lisp functions (in our

implementation, Franz Lisp) or ROSS commands that are

* invoked when an incoming "message" matches a predefined

pattern. Actors may send messages to themselves or to

other actors. The program thus consists of a set of

actors passing messages back and forth. Useful work is

accomplished when the proper message triggers appropriate

responses from the proper actor.

Actors are created in a hierarchy to take advantage

of the inheritance mechanisms. An actor will inherit the
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r behaviors and attributes of the actor that created it (its

-parent). The parent inherits from its parent, and so on;

therefore, an actor will inherit from all of its

ancestors. Multiple parents are allowed, thereby

providing the ability to construct tangled hierarchies of

any desired complexity.

The branch nodes of this hierarchy usually consist of

generic actors. The leaves are usually instance actors.

(We say "usually" because the trees can be constructed in

any fashion.) A generic actor consists of behaviors that

are common to all actors of a class; for instance, a

generic "person" actor should contain behaviors for

walking, eating, talking, etc. since these behaviors are

common to all people. The generic actor also contains the

common attributes of the members of the class. These can

be thought of as default values. An instance actor

represents an individual or functionally distinct element.

It may contain behaviors and attributes that set it apart

from the other members of the class, or it may inherit all

of its characteristics.

We have chosen to place all behaviors in generic

actors, and only the "customized" attributes in the

instance actors. This method localizes the storage of the

information as high up in the hierarchy as possible. This

allows the largest number of actors to inherit the
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information. Also, with the common knowledge moved away

* -~ from the less general actors, the focus of attention of

the simulator designer can be on the problem-

domain-specific aspects of the task.

The initial ROSS environment contains several

predefined actors and behaviors for the creation, removal,

and modification of new actors. Additionally, behaviors

*for manipulating the behaviors and attributes of actors

are predefined, as are a number of other behaviors. For a

complete description of these behaviors, the reader is

directed to the ROSS manual (McArthur, 1982).

3.3. EXTENDING THE ROSS ENVIRONMENT

While the initial ROSS environment is very powerful,

we have developed the following actors to aid in the

design of a planning task simulator:

ACTOR F'UNCTION

1. Someone Planner Model
2. Leading-Actor Planner Model
3. Link Communication Model
4. Network Communication Model
5. Bulletin-Board Data Storage

and Retrieval
6. Personal-Memory Data Storage

and Retrieval
7. Scratchpad Data Storage

and Retrieval
8. User-Interface Design Aid

*9. Designer Design Aid
10. Comm-Log Debugging Aid
11. Historian Debugging Aid

111.



Collectively, these actors are known as "system"

actors, to distinguish them from task-specific actors that

differ from one simulator to the next. In addition to the

system actors, we have found it convenient to conceptually

distinguish between two types of task-specific actors:

those actors with real-world analogues (henceforth called

"leading actors"), and those actors without analogues

(henceforth called "supporting actors"). Supporting

* actors are used to implement functions required because we

are simulating human planning functions with a computer

program; for example, the "controller", responsible for

the proper sequencing of the simulator, has no real-world

counterpart, and thus would be a supporting actor.

3.3.1. Planner Model Actors

The "someone" and "leading-actor" actors contain

behaviors that implement general-purpose behaviors of

those actors representing real-world planners (leading

actors). For example, all leading actors must "know" how

to communicate with other leading actors. This knowledge

is represented by a leading-actor behavior. Leading

actors also have other actors available to them as

personal resources, such as the "personal-memory",

"scratchpad", and "comm-log" actors. The leading actors

we have implemented contain only those behaviors necessary

III- 6
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to perform the demonstration. The behaviors needed to

- . perform general-purpose planning (see Appendix A) have not

been implemented.

3.3.2. Communication Model Actors

Message-passing in ROSS is normally unrestricted, in

that any actor may send a message to any other actor. To

better model the real-world, we have chosen to restrict

message-passing: a leading actor can communicate with

other leading actors only through the "network" and "link"

actors. Collections of these actors correspond to the

communication channels available to the leading actor's

real-world counterpart, and are defined as follows:

1. Links: provide a communications channel between two
leading actors.

2. Networks: provide a communications channel among
several leading actors.

Links and networks are referred to collectively as

comm nodes, and were introduced for the following reasons:

1. Nodes correspond to real-world communications links,
thus enhancing the "simulation" ability of the
system. This should make the system easier to
understand and debug.

2. Nodes restrict the message traffic within the system,
thus making the design more structured and reliable.

3. Nodes provide for a built-in extensibility to command,
control, and communications simulation capability,
including the capability to add the effects of
failures, redundancies, saturation, and jamming.
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3.3.3. Data Storage/Retrieval Actors

-- The "personal-memory", "scratchpad", and

"bulletin-board" actors are the primary vehicles for

storing declarative data within the simulator environment.

The personal-memory actor is designed to store

time-changing data accessible to a single leading actor.

The scratchpad actor is designed to store time-changing

data related to the calculations involved in planning a

task, and is especially suited for tabular data. The

bulletin-board actor stores time-changing data accessible

to several actors. (Data that do not change with time are

"hard-wired" into the simulator as actor attributes.)

Additionally, the personal-memory actors are capable of a

Slimited amount of inferencing, thereby allowing a less

restricted storage or retrieval syntax. For example, if a

leading actor is told that the group consists of his

superior and his peers, is told that his superior is

commander-l, and is also told that the comm-channel to the

group is the radio, then the message "fetch the

comm-channel to commander-l" would return "radio". The

proper result is returned even though the actor was never

explicitly told the comm-channel to commander-l.

"48
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3.3.4. Design Aids

We have developed two actors whose sole functions are

to simplify the simulator design phase. The

"user-interface" actor, when given a symbolic message

, name, will print the associated input prompt on the
terminal, read the response, validate the response against

a predefined set of constraints, and set the proper system

parameter to the input value. If the input is invalid, a

diagnostic error message is printed and the user is asked

to reenter the value. The "designer" actor allows for the

dynamic creation of actor instances, as well as the

creation of communications links and networks.

3.3.5. Debugging Aids

The "comm-log" and "historian" actors record message

traffic among leading actors. Each leading actor owns a

comm-log that records all messages sent to the actor. The

historian contains the sum of all messages recorded by

comm-logs. These recording actors not only simplify the

debugging of the simulator design, but also provide the

user with a record of the message traffic during a

session.
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3.3.6. Representing Constraints

Much of the information that drives the commander's

search for a solution is in the form of constraints:

mission constraints, environmental constraints,

constraints imposed by the enemy, etc. One characteristic

of a constraint is that it is desirable or sometimes

mandatory to meet the constraint, and undesirable or

detrimental not to meet it. Meeting constraints is a

meta-goal of the planning process.

Various methods can be used to represent constraints,

two of which are the most common. The first is to

describe the constraint in the form of a continuous cost

function. For example, the constraint of not getting too

close to a burning fire can be described by the distance

verses radiant energy relation: the amount of radiant

energy impinging on a surface is inversely proportional to

the square of the distance from the fire. To avoid being

singed, one must remain a certain distance from the fire;

that distance is determined through the use of the cost

function.

The second method is to represent the constraint with

a limited number of possible cases (or classes). These

cases sample the range of possible values the constraint

can take on. In the previous example, the cases

III - 10
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describing the amount of incident heat as the distance

": [ increases may use terms like: intolerable, dangerous,

uncomfortable, comfortable, noticable, and insignificant.

This representation has proven useful in guiding decision

heuristics (for example, "If dangerous, move!") and is the

type used in the demonstration system. We have found it to

be psychologically appealing since the human planner does

not evaluate his alternatives at every possible value of

the (continuous) cost function, but approximates the

constraint to limit the number of computations he must

perform. This representation is similar in many ways to

"fuzzy set" theories.

o' The selection of the proper thresholds (the borders

between classes) is critical to the effectiveness of the

constraint when used to guide heuristics. Suitable

metrics must be devised to determine where the thresholds

lie. The situation or doctrine may provide many of these

metrics, as well as user/simulator interactions

("tinkering" with the system). One example would be the

distance from the enemy that a commander could place his

resources and still remain reasonably sure of their

safety. If the range of ground artillary and mortars is 8

kilometers, then 8 kilometers is a suitable threshold.

Placing his resources closer to the enemy than 8km would

put them in danger; beyond 8km, they would be safe. Near

the threshold, the commander must make a judgement and

.",..III - 11
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other factors would come into play. If he was

-conservative, being near the 8km threshold would be

considered dangerous. If aggressive, then the risk would

be accepted. This illustrates the point that some

constraints dominate over others, and solutions are found

* through their interactions.

3.3.7. Modeling Terrain Within a ROSS Environment

All military planners require terrain data to

formulate decisions. Currently available sources for the

real-world commander include the Defense mapping Agency' s

43 Digital Terrain Map system, and the US Army's 1:50,000 and

1:250,000 scale series maps.

We have developed a specification for a General

Military Map Representation (GMMR) that, ultimately, would

contain all terrain information that commanders could

glean from standard military maps. The GMMR should

contain information about elevation, grid locations,

terrain cover and foilage, locations of roads, rivers,

cities, railroads, and items of specific military interest

(see Appendix E). Each terrain-using task specialist

would have a map reader adapted to the specific job of

extracting and compiling the tcrrain information that the

task specialist will need.
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V'" CHAPTER FOUR

PLANNING TASK SIMULATOR

DESIGN PROCEDURE

4.1. INTRODUCTION

The purpose of this chapter is to present a design

- U procedure which can be followed to construct a planning

task simulator. Chapters Five and Six describe an example

simulator designed according 1-o this procedure.

Figure IV-l describes the general structure of a

planning task simulator. The structure consists of three

distinct levels and the interfaces between the layers. The

simulator is designed to operate interactively. The user

layer contains the functions that the user will perform

during the simulation. The inclusion of this layer in the

design structure allows the retention of a human "in the

loop." The simulator layer contains the system actors and

representation mechanisms defined in Chapter Three. This

layer effectively buffers the user from the operation of

the micro-expert. The task layer contains the

micro-expert(s) that actually perform the assigned tasks.

'9I'
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The figure depicts two different organizations of the

task layer. Part [Al shows a single micro-expert

interfaced directly to the simulation layer. This

structure is appropriate for relatively simple

decision-making tasks where a single individual is wholly

responsible for developing the possible courses of action.

Part [B] shows multiple micro-experts being controlled

and coordinated by a special coordinating micro-expert.

This structure is appropriate for more complicated

planning tasks where several task specialists provide

possible alternatives to a higher echelon. The higher

echelon planner then evaluates the alternatives and

produces the decision. In both cases the simulator layer

o communicates directly with a single micro-expert, thus

simplifying the design. The second case requires the

development of a micro-expert whose domain of expertise is

the coordination and evaluation of other experts' plans.

This micro-expert should contain behaviors like those

discussed in Appendix A. The example simulator presented

in this thesis demonstrates the structure depicted in Part

[A].

The design procedure can be decomposed into two broad

subprocedures, the "general design" and the "detailed

design". Broadly speaking, the general design defines the

simulator and user layers, while the detailed design

refines these layers and defines the task layer.
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The following steps comprise the design procedure:

1. General Design
A. Task Description
B. Environment Description
C. Knowledge Domain Description
D. User Behavior Description

*2. Detailed Design
A. Simulator Design

V B. Context-level Micro-expert Design
* C. Micro-expert Design

The discussion in this chapter is somewhat brief, as it is

meant to serve as an overview of the entire design

procedure. Many of the design concepts are more easily

followed in the context of an example, and are presented

more fully in Chapters Five and Six. A more thorough

discussion of many of these steps may be found in Appendix

D, Planning Task Simulator Design Guide.

4.2. GENERAL DESIGN

4.2.1. Task Description

The task description defines the task to be performed

4' by the simulator, identifies the real-world individual or

group responsible for performing the task (the task

specialist), and defines the inputs and outputs to the

task specialist.
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The input definition details the resources and

information sources available to the task specialist for

-' the performance of his task; the output definition details

the content and destination of all required reports.

4.2.2. Environment Description

Describing the planning environment consists of

identifying the entities superior, subordinate, and

collateral to the responsible individual performing the

given task. Note that this step identifies the

individual's chain of command, as well as any coordinating

units that affect the performance of the task.

Additionally, the environment description includes the

description of the communications model to be used in the

simulator.

4.2.3. Knowledge Domain Description

The primary knowledge used in planning is in the form

of decision heuristics. These are procedural and are

naturally represented by behaviors in ROSS. The

declarative knowledge is the data used to drive the

decisions (hence, data-driven). The data needed to
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perform the task is determined by the situation, i.e. the

proper situation assessment is the collection of the data

required to make an informed decision.

Describing the required knowledge domains consists of

identifying what data is needed to perform the given task.

The description should include whether the data is

expected to change with time and whether the data is

available to more than one individual. The data should

also be classified by type: data can be facts,

constraints, representations of the environment,

objectives, descriptions of the goals, etc. The way the

data is used by the procedural knowledge will determine

the method of storing the data in the extended ROSS

-' environment.

4.2.4. User Behavior Description

Describing the user's behaviors consists of

identifying what functions the user will have to perform

during the simulation (if any). Typical functions would

include furnishing certain required input information and

possibly critiquing the simulator output. For

particularly difficult portions of the task, the user may

also be called upon to perform certain data processing or

reduction tasks. One example of this type of behavior
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exists in SAMPLE, where the user furnishes terrain data to

the simulator based upon reading a standard map.

4.3. DETAILED DESIGN

4.3.1. Simulator Design

During the simulator design phase, the simulator

actors are identified, actor relationships are defined,

and the task-specific "controller actor" and "designer

actor" are specified. The controller actor is responsible

for the proper sequencing of the simulator, while the

designer actor is responsible for the dynamic creation of

the required instances of the simulator actors. Also, any

extensions to the task simulator system functions are

incorporated during this phase.

4.3.2. Context-Level Micro-Expert Design

In the context-level design of the micro-expert, the

micro-expert task algorithm is defined. The algorithm

* should be explicit enough to allow a non-expert to follow

*the steps and produce results comparable to those of the

expert; therefore, the algorithm must embody the expert
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knowledge required to perform the task (which is normally

- provided through specialty training and experience). Much

common-sense (non-domain-specific) knowledge will be

embodied in the heuristics of the task algorithm. However,

care must be taken to also include the necessary

"world-knowledge" that is taken for granted by the human

planner.

4.3.3. Micro-Expert Design

This step consists of a top-down refinement of the

task algorithm into ROSS code. Given that the algorithm

is sufficiently explicit, the environment is properly

defined, and the required data are properly represented,

this step should be relatively straightforward. The use

and classifications of the data will drive the selection

of the representation mechanisms, and the inherent

modularity and transparency of ROSS makes coding the

algorithm quite facile. Additionally, the task does not

have to be completely defined prior to implementation of

portions of the algorithm. ROSS supports the dynamic

creation of actors and dynamic addition of behaviors; so,

through the use of "stubs", the development and refinement

of the micro-expert can be done in an incremental,

evolutionary fashion.
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CHAPTER FIVE

SAMPLE GENERAL DESIGN

5.1. INTRODUCTION

The sample system we have implemented is called

SAMPLE (Surface-to-Air Missile Placement Expert). The

purpose of SAMPLE is to demonstrate how the design

procedure in Chapter Four may be applied to the simulation

of planning tasks. The micro-expert developed for this

thesis is not complete, in the sense that it accomplishes

all of the functions that a human expert does in the

solution of the given task. In fact, it operates on only

a limited number of situations that the human expert would

have to contend with. However, we believe that the

development is complete enough to illustrate the issues

involved in planning task simulation. We feel that the

extension of the micro-expert into a complete simulator is

a problem in design refinement rather than definition or

specification.

In another sense, the micro-expert has been

over-designed, in that some design features have been

included that are not explicitly needed in the solution of

the given task. For example, the communications model

incorporated into the simulator environment is not
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necessary for the solution of the task. The reason that

* . such features have been included is to demonstrate how the

features can be incorporated into a complete system.

Solution of the example task could have been

accomplished through the use of an optimization routine,

along the lines of an operations research project.

However, we chose to develop SAMPLE to act in a manner

similar to the human planner to take advantage of doctrine

and the heuristics they embody. Either approach may be

used for the construction of micro-experts. The decisionH should be based on the application of the micro-expert,

and the use of its output by other experts of the

simulator.

Our primary goals in developing SAMPLE were to make

it simple enough to clearly illustrate our design

philosophy, and yet complex enough to demonstrate that

5.2. TASK DESCRIPTION

The task that SAMPLE will perform is that of choosing

the deployment locations of the firing and headquarters

batteries of an Improved-Hawk (I-Hawk) triad battalion.

(We will use the terms Hawk and I-Hawk interchangably,
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since only the missile system characteristics differ.) we

have limited the task domain further by specifying that

the site selection will only be done for the case where

the battalion is in direct support of a division in a

defensive posture, the supported division is flanked on

both sides, and the division area is rectangular in shape.

The real-world individual responsible for this task

is the I-Hawk battalion commander. Figure V-1 pictorially

describes the site selection task. The commander has

three firing batteries, each consisting of one base

platoon and two deployable platoons, at his disposal. He

places these firing units on suitable terrain in such a

way as to provide an air defense "umbrella" for the

supported division against low-to-medium altitude threat

aircraft.

Figure V-2 summarizes the ta3k inputs and outputs.

Army field manual FM 44-90 describes the required input

information for the performance of this task, consisting

of:

1. General guidelines and policy directives from the
Group Air Defense Headquarters.

2. Threat intelligence information from division
intelligence.

3. Battalion operational status from subordinate
firing batteries.

4. Division posture and objectives information from the
supported division.

5. Locations of friendly air defense units.
6. A topographical map of the supported division area.
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Not all of this information is used by the SAMPLE

task algorithm. Items 2, 3, and 4 are included as

"typical" values, and not as variable input values. Item

1 consists of system characteristics and mission

objectives. The system characteristics determine the

parameters of a usable site and the planning radius (the

effective range of the radar and missile system). The

mission objectives include the commanded projection

9 (extent of coverage into enemy territory) and adjacency

(distance to neighboring SAM sites to provide overlapping

coverage). Appendix B, "Site Selection Objectives",

describes how the site selection procedure changes in

response to changes in this input information.

The required outputs consist of a deployment plan and

deployment orders to the subordinate firing batteries. The

deployment plan is forwarded to the Group Air Defense

Commander and the supported division commander.

Information in the deployment plan includes the locations

of the three firing batteries, the locations of any

deployed platoons, a radar coverage footprint, and an

analysis of the planned deployment. The analysis includes

reasons why any mission constraints were not met by the

deployment plan, and the reasons for deploying deployable

platoons.
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SAMPLE does not include the coverage footprint in its

ouput to the user, nor the locations of deployable

platoons.

5.3. ENVIRONMENT DESCRIPTION

Figure V-3 details the organizational environment in

which the Hawk battalion commander performs his task. The

superior unit of the Hawk battalion is the Group Air

Defense Headquarters, and the subordinate units are the

three firing batteries assigned to the triad battalion.

Because the Hawk battalion is in direct support of a

division, the Hawk commander is also responsible to the

division commander; this is modeled in SAMPLE by providing

%1 a command channel between the division commander and the

Hawk battalion commander.

The Hawk battalion commander is also responsible for

maintaining coordination with the supported division's

organic air defense chief, and has collateral (information

only) access to the "sibling" Hawk battalions in support

of the divisions on either side of the supported division.
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The communications model used in SAMPLE is

' illustrated in Figure V-4. Each Hawk battalion commander

has four communications channels assigned to him, two

networks and two links. one network connects the members

of the Air Defense Group (the Group commander and his

subordinate Hawk commanders), while the other connects

each Hawk battalion member (the Hawk commander and his

subordinate battery commanders). The two links establish

contact with the supported division: one is a command

link to the supported division commander, while the other

is for coordination purposes to the division air defense

chief.

O We feel that this type of communications model could

easily be extended to realistically simulate the command,

control, and communications behavior exhibited by an

actual Hawk battalion. For example, by assigning a

frequency attribute to each comm node, and by implementing

a communications protocol as part of the ROSS behaviors of

the nodes, the messages passed among the leading actors

would closely resemble the message traffic of an actual

battalion. Also, dynamic removal of a comm node from the

SAMPLE environment would correspond to the destruction of

an actual communications capability, and duplicate nodes

could be added to the system to model real-world

redundancies. Behaviors to model the effects of

saturation and jamming could also be incorporated.
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5.4. KNOWLEDGE DOMAIN DESCRIPTION

5.4.1. Areas of Expertise

The Hawk commander needs expertise in the following

areas to effectively place his firing units:

1. Hawk system characteristics and parameters.

2. Situation assessment.

3. Terrain.

4. Deployment objectives and doctrine.

System characteristics refer to the operating limits

of the Hawk surface-to-air missile system, such as maximum

range against low-to-medium altitude targets, maximum

allowable site gradient, minimum required area to place a

firing unit, etc.

Situation assessment refers to the ability of the

commander to react to the requirements of his current

situation and come up with a deployment plan that meets

mission requirements. Specific abilities of the commander

include modifying the expected system range based on the

expected threat, incorporating the constraints of

superiors into his plan, and choosing the appropriate

* -~ strategy based on the available terrain and assigned

mission.
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The commander must know how terrain limits and

enhances the capabilities of his weapon system. Also, he

must know how to read a military map and decide whether a

given location is suitable for placing a firing unit.

Finally, the commander must know his mission, his

short-term objectives, deployment doctrine, and how these

factors drive his selection of firing sites. Established

doctrine is what provides the commander with the decision

heuristics used in accomplishing his task, while the

mission and the situation objectives guide the commander

in choosing the proper heuristic to apply in a given

situation.

Not all of these areas of expertise are fully

implemented in SAMPLE. For example, our task algorithm is

based on a constant system range (known as the "planning

'' radius") that does not take into account the expected

threat's altitude or electronic countermeasures. However,

we have used a conservative, or worst-case, value of this

-. parameter, so that the algorithm solves the more

highly-constrained case. Additionally, we have kept a

human in the loop to provide abstracted terrain data to

the system, as opposed to automating the map-reading

function.
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The Hawk commander's expertise can be classified into

two major knowledge domains: the knowledge needed to

identify acceptable sites, and the knowledge needed to

evaluate and choose the "best" sites. An acceptable site

must be near an accessible road. The terrain must be

fairly flat over an area of approximately 400 by 400

meters. The ground cover must be light enough to allow

the equipment to be brought in with wheeled vehicles and

maneuvered. Most importantly, a site must be in a

location where it meets the mission objectives of

projection and adjacency and yet retain a degree of

security from enemy artillery.

The evaluation and selection procedure requires

knowledge of the interactions of the candidate sites.

Sites are evaluated on the degree of acceptability (based

on the criteria listed above), the dominance of the site

(height, in order to project over terrain features that

would mask the radar), and the degree of overlap between

sites. One desira~ble condition is to have the site within

the coverage umbrellas of neighboring sites in order to

protect each other from attacking enemy aircraft. The

selected sites, therefore, cannot be chosen independently

- . of each other, but must be evaluated as a group.
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These two knowledge domains clearly are not used

independently of each other. The evaluation process uses

knowledge of the acceptability of a site, and sites are

not tenatively selected based on the acceptability-

criteria alone. In particular, acceptable sites may lie

in valleys, but would not be examined until all dominant

sites were eliminated from consideration. This prevents

the commander from selecting tentative locations that

would not compete well in the evaluation process. The

dominance of a site is an evaluation criteria, not a

factor contributing to the acceptability of the site. Both

knowledge domains are used interactively by the commander

as needed. The process of utilizing the knowledge is,

therefore, opportunistic.

5.4.3. Data Representation

System characteristics are static, in that they do

not change from one scenario to the next. As such, these

characteristics are stored in a read-only database file

structured as a collection of Lisp setq statements. The

situation assessment data are quasi-static, in that the

data change from one scenario to the next, but remain

constant throughout a scenario. These data are stored in

the personal memories of the various leading actors.

Terrain data remains constant throughout a scenario (since
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we assume that the supported division is not moving) , but

the focus of attention of the micro-expert changes often.

Therefore, the current terrain data are dynamic, and are

stored on scratchpads.

Generally speaking, data are grouped and stored as

table or list structures. For example, an individual hill

is represented as a list: the first element is the

location of the hill, the second and third elements are

the elevation of the hill and location of the nearest

V road, respectively.

5.4.4. Heuristics

Two types of heuristics are used in SAMPLE: decision

heuristics and case-selection heuristics. Decision

heuristics are the rules used to choose locations from a

list of possible candidates, and are implemented as

Hawk-commander behaviors. Case-selection heuristics are

the rules used to determine which decision heuristics to

apply in a given situation. Case-selection heuristics may

be either implemented as behaviors, or "designed-in" --

implicit in the limited scope of the task algorithm.

Limiting the scope of the algorithm simlifies the

micro-expert design and implementation, resulting in a

less robust system. However, after development of the

V -15



limited micro-expert, the case-selection heuristics may be

changed to behaviors. The micro-expert should be modular

enough to transport directly into the extended system as a

specialist in the limited case.

5.5. USER BEHAVIOR SPECIFICATION

The user plays the role of the Hawk battalion

commander's superior units, and therefore supplies the

scenario definition to the system. Components of the

definition include:

1. Degree of overlap required with adjacent Hawk units,
and the minimum required radar coverage past the FEBA.

1.9.2. Division width.
3. Locations of friendly air defense units.

The user is also responsible for inputting terrain

data to the simulator, under the direction of the

micro-expert. Map reading behaviors include:

I. Determining how many usable and unusable hills are in a
specified region.

2. Determining hill parameters, to include height,
location, and the location of the nearest road.

3. Determining the minimum and maximum elevations in a
given region.

Complete specifications of the user's interaction

with the system is presented in Appendix C, "SAMPLE User's

Guide".
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CHAPTER SIX

SAMPLE DETAILED DESIGN

6.1. SIMULATOR DESIGN REFINEMENT

Figure VI-I presents the block diagram of the

functional modules used in SAMPLE. Figures VI-2 and VI-3

present these modules as ROSS actors, and illustrate the

hierarchical (inheriting) relationships among them.

Descendant actors will inherit the behaviors and

attributes of their parent(s); as shown in the figures, it

is possible for an actor to have more than one parent.

6.1.1. Hierarchical Structure

Given the design procedure established in Chapter

Four, all single-task planning simulators will exhibit a

high-level hierarchical stu.:ture similar to that of

Figure VI-2. The "something" actor is resident in the

initial ROSS environment and contains the behaviors

responsible for the creation of actors, manipulation of

attributes, definition of behaviors, etc. The "thing" and

"system" actors, as well as the generic descendants of

"system," are resident in the extended ROSS environment.
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The descendants of the "sample" actor implement the

S".task-specific behaviors performed by the simulator, and

are divided into leading and supporting actors (as defined

in Chapter Three). The micro-expert simulates the

real-world task specialist and is therefore a leading

actor (in the sense defined in Chapter Three). The SAMPLE

leading actor structure is shown in Figure VI-3, Part (A].

The only SAMPLE leading actor with its own (i.e.,

non-inherited) behaviors is the "hawk-commander" actor.

The required behaviors of the other leading actors are

either performed by the user as part of the scenario

definition, or are handled by the inherited behaviors of

the "someone" actor.

6.1.2. Supporting-Actor Functions

Figure VI-3, Part [B] illustrates the supporting actor

structure.

"Start-up-int" is responsible for conducting the

scenario definition dialogue with the user.

"Mapreader" is logically a component part of the

micro-expert and will be discussed in detail in later

sections. Briefly stated, its function is to translate
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symbolic requests for terrain data into specific user

instructions and to relay the answers back to the

micro-expert.

"Sample-designer" is responsible for creating dynamic

actor instances. It translates symbolic requests such as

"Create an air defense group of 5 members " into the

appropriate system messages needed for the creation of the

group members.

* The memory actors (hawk-cmdr-pad and the leading

actors' personal memories) are responsible for data

storage and retrieval. Their behaviors are inherited from

system actors, but they contain task-specific attributes

-- symbolic data definitions and initialization

information.

6.1.3. Actor Structure

Figures VI-2 and VI-3 detailed the hierarchical

structure of the SAMPLE simulator actors from an

inheritance point of view. In an object-oriented

language, complex functions are most easily implemented

through the interaction of distinct but logically related

actors, each performing a portion of the function. Figure

VI-4 shows the relationships among the SAMPLE actors.

VI -6



atbutes atbutes Fbebaiors

~~iors proa

Part [A] System or Part [B] Leading Actor
Supporting Actor

:-.

task
latbutes] algorithm

kme k nde logry

(srchpad) (mpader

r.
:.. Part [A] S rt [C] Mcoprt]LednAco

Figure VI-4. Logical Actor Structure.

VI 7 7

S . task..**..* *~.;~.....................



The structure of a system or supporting actor is

shown in Part [A] of the figure. These actors have the

simplest logical structure, being composed of the

attributes and behaviors included as part of the actor

definition.

Leading actors are slightly more complicated, and

their structure is shown in Part [B]. In addition to the

attributes and behaviors of the leading actor definition,

a personal memory and comm log (which are system actors in

their own right) are "assigned" to each leading actor.

The purpose of these assigned actors is to extend the data

representation capability of the leading actor.

The most complex logical structure is that of the

micro-expert, shown in Part [C] of Figure VI-4. Because

the micro-expert is a leading actor, it is assigned a

personal memory and comm log. In addition, the

micro-expert is assigned a scratchpad and mapreader to

allow the micro-expert to deal with terrain data. The

scratchpad localizes the terrain data representation used

by the component actors, while the mapreader extends the

procedural knowledge of the micro-expert. The mapreader

is responsible for querying either a human being for the

needed terrain data (in the case of SAMPLE), or an

automated terrain database (in the case of a totally

automated simulator). By separating out the mapreader
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behaviors into a distinct actor, the behaviors of the

hawk-commander actor remain the same in both cases.

6.1.4. Actor Interactions

The focal point of the user interaction is the

"Continue" file. This file transmits definition and

constraint data requests to the user-interface actor in a

-. symbolic form. The user-interface formats the user query,

accepts and validates the input data, and passes the data

back to Continue. Based on the scenario definition, the

Continue file issues actor creation requests to the

sample-designer actor, which creates the actors. Continue

then transmits the required scenario definition and

constraint data to the leading actors in the form of

memory storage messages. Having thus defined the scenario

to the leading actors, Continue issues a "start

simulation" message to the selected hawk-commander actor.

The message passing among simulator leading actors is

regulated by the communications actors assigned to them.

Having received "start" messages from Continue, the group

and division commanders transmit thier respective

information messages to the micro-expert through their

assigned communications channels. During the course of

the simulation, the micro-expert will query his adjacent
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hawk commanders and the division air defense commander for

their locations. These requests and their responses are

again routed through the assigned channels.

6.1.5. System Files

Several task-specific system files serve to augment

the simulator actors:

1. "Sample-fns" is a compilation of the Franz Lisp
functions called by the simulator actor behaviors.
While these functions were developed to perform
task-specific operations, we hope that many can be
used in other task domains as well.

-. 2. "Sample-abbrevs" contains the ROSS abbreviation
definitions used by SAMPLE. The abbreviation package
is not resident in ROSS, but was included in the
system installed on the AFIT SSC. This package
substantially improves the readability and
transparency of the code. Again, many of the

. abbreviations are appropriate to any ROSS
implementation; in fact, most of the ones included in
SAMPLE were originally defined for SWIRL, an air
battle simulator written in ROSS and developed at
RAND (McArthur, 1982).

3. "Sample-design" contains the definitions of the global
variables used in SAMPLE. It is read in by the Lisp
reader; therefore, the format of this file is tightly
constrained. The purpose of this file is to localize
static system variables and thereby permit easy
modification to the simulator.

4. "Continue" is used to "boot" the simulator from within
the initial ROSS environment. It contains the
instructions needed for the dynamic creation of actor
instances, and the messages needed to initialize the

-., created actors.
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6.2. CONTEXT-LEVEL MICRO-EXPERT DESIGN

The site selection task performed by a Hawk commander

in direct support of a division is described in general in

Army Field Manual FM 44-90. The following pseudocode

presents the first-level decomposition of the task

algorithm used in SAMPLE:

1. Conduct preliminary evaluation.
2. Determine forward regions of interest.
3. Choose locations of forward batteries.

If solution is still feasible then
4. Choose location of rear battery.
5. Analyze the plan.
6. Choose locations of deployable platoons.
7. Analyze the plan.
8. Choose location of headquarters battery.
9. Issue deployment warning.

10. Report.

Only steps 1, 2, 3, and 10 are implemented in the

-current version of the SAMPLE simulator. For the most

part, the behaviors required in the remaining steps are

modifications to the behaviors used in the implemented

steps. Note that if the given situation is not feasible

(that is, the algorithm fails to find suitable forward

locations), steps 4 through 9 are not attempted -- rather,

"" the user is notified immediately.

We would like to emphasize that the task algorithm

presented here is our interpretation of the information

presented in the field manual; the algorithm has not been

examined by an air defense expert for either completeness

nor accuracy. Because of the lack of expert review, ease

VI -11
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of modification and clarity of presentation have been our

primary design goals. We feel that the task algorithm we

have developed clearly demonstrates the potential of the

proposed design methodology, and we believe that the

extension of this algorithm, to a complete and accurate

representation of human task performance would be

"- relatively straightforward.

6.3. MICRO-EXPERT DESIGN

6.3.1. Micro-Expert Component Interaction

Figure VI-5 defines the interactions among the

micro-expert components that occur during the execution of

the task algorithm. The Hawk-commander actor generates

symbolic data requests and passes these requests to the

mapreader actor. The mapreader then prompts the user for

the required data and either passes the data directly to

the Hawk-commander or updates the scratchpad. The

scratchpad localizes the terrain data, and provides data

storage and retrieval functions. Upon creation, the

scratchpad tables are initialized with the data contained

in the "sample-design" file described in Section 6.1.5.

The Hawk-commander actor uses the information contained in

the scratchpad to drive the decision heuristics

" -implemented in the task algorithm behaviors.
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6.3.2. Level Two Task Decomposition

Step One, "conduct preliminary evaluation", is further

decomposed into the following steps:

1.1. Collect required input information.
1.2. Reallocate battalion assets if necessary.
1.3. Determine planning radius.

During step 1.1, the Hawk-commander actor issues

location queries to its adjacent battalions on either

side. The responses are then stored on the assigned

scratchpad. Also during this step, copies of the data

from personal-memory (entered earlier) are stored on the

scratchpad.

Step 1.2 is not implemented; if it were, the

Hawk-commander would adjust battalion assets so as to

equalize battalion assets among the three firing

batteries. For example, if one firing battery had only

one of three missile launchers operable, then a launcher

from a full-strength battery would be assigned to the

weaker battery.

kit
During step 1.3, values of the planning radius,

* -. mutual support radius, and overlapping fire radius are

computed and stored on the scratchpad. (Appendix B

" describes the definitions and significance of these

values.)
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Step Two, "determine forward regions of interest", has two

sub-behaviors:

2.1. Compute region points.
2.2. Determine forward regions.

The real-world Hawk commander knows that, in the

absence of other constraints, firing units would be placed

symmetrically within the division area. This symmetric

placement would yield forward batteries located one-fourth

of the division-width from the division edges and out of

range of threat medium field artillery (about 12

kilometers from the FEBA). Knowing the desired placement

strategy, the commander looks for possible deployment

4 sites near the optimum points. This behavior has been

modeled in SAMPLE through the use of regions: based on
input constraints, division width, locations of adjacent

units, and the planning radius, several regions are

defined in terms of the potential suitability of sites

located within the region.

Step 2.1 computes the values of the points used to

define these regions, while step 2.2 constructs the

representation of the regions in terms of the points and

stores this representation on the scrathpad. By ordering

the search for candidate sites according to the potential

values of the various regions, the "look for sites near

here" behavior of the real-world Hawk commander is

VI - 15
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. simulated. For example, if several good candidates are
w

identified in the region nearest the optimum point, then

the algorithm can avoid looking for candidates in inferior

regions. The use of regions does for the algorithm what

experience does for the real-world commander: avoidance

of an exhaustive search of the entire division area.

Step Three is broken down into the following sub-steps:

3.1. Get the division characteristics.
If the division is flat

then 3.2. Choose candidates using the
terrain-free rules.

else 3.3. Choose candidates using the
normal rules.

3.4. Determine best and alternate site pairs.
"°

4i The purpose of step 3.1 is to determine whether the

division area is flat. Selection of deployment sites when

the terrain is flat is treated as a special case; since

all locations are equally dominant, the decision

heuristics change and the definition of candidate sites

changes. The current version of SAMPLE does not implement

step 3.2.

For each side of the forward division area, step 3.3

decomposes into:

Loop for each region do
3.3.1. Get candidates in the region.
3.3.2. Score the candidates.
3.3.3. Trim the candidates.
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Step 3.3.1 is performed by the mapreader the

region is described to the user, the terrain data is

prompted for, and the user's response is stored on the

" scratchpad. The scoring procedure of step 3.3.2 is

described in Appendix B, Site Selection Objectives, as is

the procedure for determining best and alternate pairs

" (step 3.4).

Cand: -rimming is a heuristic device that serves

to reduce . amount of storage and computation required

to execute tne algorithm. After each addition to the list

of candidates, candidates with higher (worse) scores and

lower elevations are eliminated from further

p consideration. However, the trimming is not performed

until the number of candidates exceeds five.

If at any point a candidate with a score of zero is

found (that is, the site is optimum with respect to all

selection constraints), then only higher sites will be

added to the candidate list (since only higher sites could

' produce better sites).

Step 10, "report", consists of formatting and passing the

candidate pair data and alternatives to the user. Results

A of an example scenario are presented in tabular form in

Chapter Seven, Summary.
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CHAPTER SEVEN

SUMMARY

- 7.1. INTRODUCTION

The purpose of this chapter is to present what we

feel are the most significant results of this thesis

effort. An example scenario definition and terrain data

table are presented first, along with the simulator

generated site selections for the forward firing

batteries. A short discussion of how the simulator

constraint representation resulted in the given solution

is followed by our projection of the potential

beneficiaries of this type of planning task simulator. The

chapter closes with our recommendations of further

research needed to realize these potential benefits.

" 7.2. TASK ALGORITHM RESULTS

Table VII-l defines the scenario used for one example

session. An explanation of the terms used and values

allowed can be found in Appendix C, SAMPLE User's Guide.

Table VII-2 presents the parameters of the usable

candidate sites in the forward division area. The

unusable hills input during the session are not tabulated

VII - 1
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herein. Table VII-3 shows the scoring of the individual

sites, and Table VII-4 presents the mutual scoring of the

interaction of site pairs. Appendix B, Site Selection

Objectives, contains the explanation of the site scoring

procedure and the metrics used.

Table VII-I. Scenario Definition.

Parameter Value

Projection constraint 12 kilometers
Adjacency constraint 100% of planning radius
Division width 48 kilometers

-. Left-adjacent location (-12 -12)

Right-adjacent location (62 -14)

Table VII-2. Candidate Sites.

Hill Location Elevation Location of
Nearest Road

Left-i (12 -12) 450 (12 -12.5)
Left-2 (14 -14) 520 (15 -15)
Left-3 (13 -8.5) 480 (12 -8.5)
Right-i (38 -12) 620 (38 -12)
Right-2 (42 -15) 480 (40 -16)
Right-3 (47 -18) 430 (47 -18.1)

VII - 2
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Table VII-3. Site Scoring.

Constraint Left Hill Right Hill
1 2 3 1 3

Adjacency 0 0 0 0 0 0
Projection 0 0 0 0 0 0
Safety 1 0 2 1 0 0
Accessibility 2 3 3 0 3 0
Optimality 0 1 0 1 2 3
Masking 2 0 0 0 0 0

Total 5 4 5 2 5 3

I'.-

Table VII-4. Pair Scoring.

Hill Pair Support Class Total Pair Score

Left-2 / Right-i 1 8
Left-i / Right-i 1 9
Left-3 / Right-i 1 9
Left-2 / Right-3 2 ii
Left-2 / Right-2 1 11
Left-3 / Right-2 1 12

- Left-i / Right-3 2 12
Left-3 / Right-3 2 12
Left-i / Right-2 2 14

The terrain abstraction shown as Table VII-2 was not

derived from an actual map; the values used were chosen to

illustrate concepts. For example, the hills on the left

side are roughly equivalent, while those on the right show

a greater range of scores.

. Note that hill Right-i is included in the three best

scoring pairs. We would feel confident in choosing this

hill as part of the final deployment plan. The closeness
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of the scores of the left-side hills points out the need

for reporting alternate selections. The human expert

makes the final determination of which pair is "best".

7.3. CONCLUSIONS AND RECOMMENDATIONS

Based on our experiences in the design and

implementation of a limited planning task simulator, we

have come to the following conclusions:

1. ROSS offers a powerful environment for the development
and implementation of planning task simulators.

2. Task simulators incorporating the techniques of Chapter
Three, and developed according to the procedure given
in Chapter Four, can provide automated systems that
are highly modular and highly transparent to the end
user.

3. The potential benefits of similar task simulators are
great.

4. Much work remains to be done.

7.3.1. ROSS Environment

The power of ROSS, and its suitability for task

simulator implementation, derives from the ease with which

behavioral structures can be integrated with declarative

data structures. By allowing the task specialist actor
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(whose behaviors embody the decision rules) access to

symbolic data structures (contained in the various memory

actors), the designer is free to develop systems capable

of simulating complicated human behaviors.

7.3.2. Modularity and Transparency

The modularity of the simulator, as exemplified by

the simulator structure presented in earlier chapters,

-. allows the designer to change portions of the system

without redesigning the entire simulator. Also, much of

the work done in the development of one simulator may be

transferred to other simulators with little or no

*" modification.

The transparency of the system is demonstrated by the

code developed: much of the code can be easily read,

especially the first-level decomposition of actors'

behaviors. This near-English syntax, and the natural

- .* representation schemes used, allows the development of

- complex systems that non-computer experts can understand.

VII - 5



7.3.3. Potential Beneficiaries

We believe that the following classes of users could

benefit from the development of the proposed task

simulators:

1. Battlefield commanders could use the simulator to
predict the most probable courses of action of the
enemy or as a conventional decision aid to develop
decision alternatives.

2. Training academies and war colleges could use the
simulator as a training tool to demonstrate friendly
and enemy planning methods, and as an environment
where experimentation can be performed as part of the
instruction.

3. War game developers at the Pentagon could use the
simulator as either the enemy or friendly troop
commander in a computer simulation. Simulators may

rA even be pitted against each other in such a scenario.

4. The intelligence community could use the simulator as a
test-bed to verify the accuracy of predicted enemy
planning models. Additionally, the system might be
used to examine the effects of erroneous, falsified,
or incomplete information -- false information about
the enemy on the model, or the effect that falsified
information would have on the enemy's decisions.

7.3.4. Recommendations for Future Research

The requirement of a human map reader to reduce and

input the terrain data severly limits the current

simulator's speed of operation and usefulness. We

therefore recommend that the map reading function be

*totally automated. of course, complete automation would
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require a digital terrain representation of the type

__ discussed in Appendix E.

The utility of the proposed task simulators,

particularly as battlefield or training aids, would be

greatly enhanced by the addition of a graphics

input/output support package and natural language

interface. The clarity of the simulator would be improved

by the addition of an interactive query mechanism as well.

The power of the proposed simulators would be further

enhanced by the implementation of learning mechanisms and

the development of a coordination and general planning

micro-expert (of the type found in Appendix A).

We have stated many times that we believe that useful

task simulators can be developed using the methods and

techniques proposed in this thesis. Only further research

(extension of the SAMPLE simulator and the development of

other simulators) will show the validity of our claim.

VII -7

d.~-- .. . . . . . -



BIBLIOGRAPHY

Alexander, Arthur J. Modeling Soviet Defense Decision-
makina. Rand Corporation paper prepared for the
Naval Postgraduate School/UCLA Center for
International and Strategic Affairs Conference on
Soviet National Security Decisionmaking, Monteray,
California, August 1980. (AD-Al03362).

Davis, Randall. "Expert Systems: Where Are We? And
Where Do We Go From Here?", The AI Magazine, 3_ (2):
pp. 3-22 (Spring 1982).

Druzhinn, V. V. and D. S. Kontorov. Concep, Algorithm,
Decision Soviet View). Moscow, USSR: 1972.
Translated under the auspices of the United States
Air Force.

Fiegenbaum, Edward A., et al. The Handbook of Artificial
Intelliggnce. Stanford, California: HeurisTech
Press, 1981.

Foderaro, John K. and Keith L. Sklower. The FRANZ LISP
Manual. The Regents of the University of California,
April 1982.

Hayes-Roth, Barbara, al al. Human Planning Processes.
Rand Corporation report R-2670-ONR prepared for the
Office of Naval Research, Arlington, Virginia,
December 1980. (AD-A095107).

Klab-, Philip, et al. SWIRL: Simulating Warfare in the
ROSS Lang__gj. Rand Corporation Note N-1885-AF,
September 1982.

McArthur, Dave and Philip Klahr. The ROSS Language
Manual. Rand Corporation Note N-1854-AF, September
1982.

Ogawa, Hitoshi, et al. "An Active Frame for the Knowledge
Representation", Proceedingg of_ the Sixth
International Joint Conference on Artificial
Intelligence, pp. 668-675. Tokyo, Japan, 1979.

Sacerdoti, Earl. "Problem Solving Tactics", Proceedings
.I the Sixth International Joint Conference on
Artificial Intelligence, pp. 1077-1085. Tokyo,
Japan, 1979.

BIB - 1



-,

Stefik, Mark. "Planning and Meta-Planning", Reading in
Artificial Intelligence, pp. 272-286. Palo Alto,
California: Tioga Publishing Company, 1981.

US Army Field Manual FM 44-90, Hawk Air Defense Artijlery
Emplacement. Washington D.C.: US Goverment Printing
Office.

Wilensky, Robert. Planning and Understanding. Reading,
Massachusetts: Addison-Wesley Publishing Company,
1983.

Winston, Patrick H. Artificial Intelligence. Reading,
Massachusetts: Addison-Wesley Publishing Company,
1977.

00

B.

BIB - 2



APPENDIX A

" - PLANNING TACTICS

As stated in Chapter 2, a general planner must have

at its disposal a set of tactics for decomposing the

problem into subtasks, delegating the subtasks to more

specialized entities, and resolving the conflicts that

appear when integrating the subtask solutions (or

proposals) to form the plan. This appendix will present

two bodies of thought: the first from the paper "Problem

Solving Tactics" (Sacerdoti, 1979) which examines the

strategies and tactics of the planning process; the second

- . from Robert Wilensky's book "Planning and Understanding"

(Wilensky, 1983) which illustrates a large collection of

"meta-entites" to implement his theories of plan

generation and understanding.

It should become apparent that while the two

approaches differ, the underlying mechanisms are quite

similar. In both approaches, subcomponents of the planner

work to recognize particular types of goal interactions.

The subcomponent is evoked when the interaction occurs,

and contributes its "expertise" to the total plan. The

difference is in the perspective of the explanation. Earl

Sacerdoti presents the basic strategies of automatic

problem solving, and tactics to improve the efficiency of
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*the strategies. Robert Wilensky presents a handful of

* possible goal interactions, and the micro-entities that

handle these interactions. A collection of these

micro-entities, with the appropriate control mechanism,

can be collectively considered to be a tactic in the

Sacerdoti sense.

A.1. STRATEGIES

This section is based on the work by Sacerdoti

(Sacerdoti, 1979).

Typically, planning the actions necessary to achieve

0 the goal involves an extensive search through a set of

* possible solutions. This volume of alternatives, known as

the search space, demands that the planner have a number

of control strategies to guide the search. The search

space is normally described as a tree with the initial

state as the root, and branches along every alternative.

Hopefully, at least one of the branches leads to the goal

state. Another possible tree is one with the goal as the

root and the initial state in the upper branches. As one

considers all the factors and all the alternatives, the

search space becomes enormous and the need for strategies

to limit the space becomes clear.
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The first strategy Sacerdoti discusses is the

"means-ends-analysis" search algorithm used by GPS and

W STRIPS (Winston, 1977: 130-42) and works as follows. The

"difference" between the initial and goal states is

determined, and actions are examined to find the one that

would most reduce the difference when applied. (The

methods of judging the differences and determining

suitable metrics with which to make the evaluations are a

science unto themselves, and are beyond the scope of this

thesis. Many of the factors involved are highly

domain-dependent, and so a discussion of them can best be

done only in the context of an example.) Once a suitable

action is found, it is applied to the initial state,

resulting in an intermediate state that is closer to the

goal than the initial state is. The process continues in

the same manner, moving ever closer to the goal until it

*- is reached.

5'

Sometimes the most promising action cannot be applied

directly to the initial state. The preconditions of the

action are then chosen to be the subgoal, and a search is

made to reach the subgoal state from the initial. This

strategy is applied recursively until a sequence of

actions can be found that lead from the initial to the

5S.. original goal state.

A 3
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The second important search strategy is

"backtracking". Backtracking, as described by Sacerdoti
is the mirror image of means-ends-analysis. Starting with

the goal state, actions are examined to find ones that

result in the goal state. The preconditions to these

actions are then used as subgoals, and the strategy

reapplied to the subgoals until the initial state

satisfies the preconditions of an applicable action. At

this point a path will have been traced from the initial

state through the intermediate states to the goal.

As Sacerdoti points out, neither of these strategies

is adequate for complex problems since the search space

grows so quickly, especially with multiple goals

(conjunctions). Also, ordering of the subgoals may be

important, but these strategies have no reason to prefer

one conjunction over another. Consequently, the search

may try to find a solution to achieve the subgoals in an

impossible order. Neither of these strategies

distinguishes between the important and the detail.

Additional information must be utilized to focus the

attention of the problem-solver to that which is critical

to the problem. This information is supplied through the

use of certain tactics that are applied with the basic

strategy to limit the search space.

4 4
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A.2. TACTICS (Sacerdoti, 1979)

This section is also based on the work by Sacerdoti

(Sacerdoti, 1979).

The first and most obvious tactic is called

"hierarchical planning". The most important subgoal is

tackled first, followed by the next most important, etc.

The solution of the important subgoals often leaves the

world in a state from which the less important subgoals

can easily be reached. This method allows the planner to

abstract the situation and the actions, postponing the

details and subgoal interactions for later, and allows him

to concentrate on the critical decisions without

overconstraining the search with influences by less

important subgoals. Once the general plan is sketched

out, the conflicts and redundancies can be resolved

individually, with methods that may have been incompatible

with the solution of the main subgoals.
JW

This abstraction can be extended to multiple levels,
each level serving as a skeleton to guide the

'" problem-solving process at lower levels. This "hierarchy"

* uf plan skeletons allows complex problems to be broken up

into a set of simpler subproblems. However, plans can be

created that appear workable at the high level, but which

fail in the implementation of the details. The tactic

A -5}i
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that resolves this problem, "hierarchical plan repair",

checks that all the intended effects of the high-level

plan are achieved by the collection of lower-level

actions. Only a small number of checks need to be made,

due to the heirarchical nature of the plan. The plan can

then be repaired, using a variety of methods (Sacerdoti,

1979: 1079). This verification, accomplished as the plan

develops, insures that necessary knowledge is not left out

by the abstractions. The validity of the plan is then

limited by the available world knowledge, rather than the

power of the abstraction.

Instead of abstracting the situation as in the

heirarchical tactics, "bugging" deliberately makes

assumptions that oversimplify the problem of integrating

subplans. The planner produces an initial "almost right"

plan with bugs in it. However, the bugs are expected and

of a limited number of types, and so can be remedied

easily. Other names for this tactic are the "debugging

approach" and "problem-solving by debugging almost-right

plans." The latter was coined by G.J. Sussman, who first

employed the bugging technique in his HACKER system

(Sussman, 1975).

Principles of these first tactics are incorporated

into the tactic "pseudo-reduction" for dealing with goals

that include conjunctions (goal 1 AND goal 2). The
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conjuncts are treated as subgoals, but they may have the
4

same importance so they cannot be ordered as in the

hierarchical planning tactic. Instead, ordering is

ignored initially and each conjunct is planned

independently.. The plans are then integrated in a manner

similar to bugging. This tactic reduces the amount of

backtracking by avoiding premature commitments to the

ordering of the conjuncts and subgoals.

An interesting alternative to actively seeking out a

solution to a goal or subgoal is the approach

"disproving". Disproving uses a "pessimistic" analysis of

the goal to try to show the futility of the endeavor. If
any of a set of conjunctive subgoals is found impossible,

0 then it is of little value to work on the others.

Furthermore, if a goal cannot be shown to be futile, the

knowledge gained can be used by the other "optimistic"

tactics.

A.3. META-PLANNING

This section is purposefully brief, since a proper

discussion of the issues of meta-planning would constitute

a major section of this thesis. The reader is referred to

the book Planning and Understanding by Robert Wilensky for

,. ..-. a thorough analysis (Wilensky, 1983).

A -7
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The fundamental assumption of the book (as well as

this thesis) is that planning can be accomplished through

the coordinated efforts of specialists. Meta-planning,

simply stated, is planning about plans: the processes

involved in discerning the goals, delegating tasks,

formulating subplans, and integrating the subplans into

the final solution. Meta-planning is domain-independent,

in that the experts involved are applicable to any

planning function. Robert Wilensky adds an extra level of

expertise to the traditional meta-planner: his system

must also understand the situation in terms of plans. This

sets up a two-pronged attack on a problem -- plans can be

formulated to meet the specified goals by the planning

site of his system, and goals can be deduced from given

plans and actions of the players in the scenario. The

interplay between these two approaches becomes

opportunistic in nature, and the system will seek a

solution to the assigned problem in whichever fashion

* works.

The author goes into great depth to explain various

goal interactions and how these are understood by the

*meta-planning system. The control structures of two

systems (PAM -- Plan Applier Mechanism, and PANDORA --

Plan ANalysis with Dynamic Organization, Revision, and

Application) are explained, along with some details of

A-8



their implementations. The problems that arose with these

systems are also discussed.

-v It is our believe that such an implementation of the

meta-planning functions can be accomplished in the

simulator environment we have developed. The author used

a knowledge representaion language (PEARL) which he

developed for the representation of the goal interactions

Vand relationships among "objects". However, PEARL

discourages procedural attachment. While this was useful

in the development of the meta-entities, it becomes a

limiting factor to the growth of an extended system. We

hold that ROSS provides an equivalent representation

mechanism as PEARL, but also provides full procedural

capability.
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APPENDIX B

SITE SELECTION OBJECTIVES

B.].. INTRODUCTION

The purpose of this appendix is to present the

doctrinal principles guiding the site selection task

algorithm and the representation mechanisms used by the

simulator system to incorporate these principles. In

keeping with our implementation philosophy, the numerical

values used in the representation are meant only to

exemplify how the incorporation may be handled.

B.2. DOCTRINAL OBJECTIVES

Air defense doctrine defines the following objectives

that must be met to ensure adequate air defense:

1. Air Defense Projection beyond the FEBA.
2. Balance.
3. Weighted Coverage.

*4. Mutual Support.
5. Safety.

The projection objective requires that firing units

be placed far enough forward so as to enable engagement of

threat aircraft before entering the airspace of the

.~* supported division. Balance requires that the entire

B-



division area be included in the air defense umbrella

(also known as "all-around defense"). Weighted coverage

requires that likely avenues of attack be given more

protection by assigning multiple assets to those avenues.

This objective is to be met only to the extent that other

objectives are not sacrificed. In the context of the

direct support mission, weighted coverage implies that the

majority of air defense assets will be placed toward the

FEBA. Mutual support requires that firing units be placed

so that one unit can cover the blind spots of another

unit, if this is possible without violating the other

objectives.

Figure B-i, Part [A], illustrates the definition of

mutual support. A circle of radius equal to the operating

range of the system radar is drawn around the location of

the firing unit. If this circle projects past the

location of another firing unit by a sufficient margin,

then the two units are said to be in mutual support of

each other. For the purposes of SAMPLE, mutual support

. will be established when two firing units are located

within two-thirds of the operating range of each other.

Part (B) of Figure B-i illustrates another important

concept in placing firing units--overlapping fire. Two

units are said to provide overlapping fires when their

respective range circles overlap by a sufficient margin

B -2
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* Figure B-.Mutual Support and Overlapping Fire.
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(taken to be four-thirds of the range in SAMPLE). One of

-: the implications of the balance constraint is that "~gaps"

in the air defense coverage are not allowed; therefore,

firing units may not be separated' by more than the

overlapping fire distance.

Air Defense doctrine also realizes that destroyed

firing units do not contribute to division air defense.

Therefore, an objective of "reasonable safety" has been

established: to the extent that mission objectives are

not compromised, firing units will be placed out of range

of threat medium field artillery (about 12 kilometers).

Figure 5-1 presented a typical deployment pattern,

and is repeated here as Figure B-2. The operating range

of the firing units is taken to be 30 km, which implies

that mutual support distance is 20 km and overlapping fire

distance is 40 km. Balance is achievea through covering

practically all of the division area by at least one

firing unit. Balance is also achieved across division

boundaries by locating the forward firing units within

overlapping fire distance of the forward units of adjacent

divisions.

The given deployment also satisfies the projection

objective to the extent that the air defense coverage is

extended past the FEBA. Also, coverage has been weighted

B-4
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toward the expected avenue of attack (namely, across the

FEBA) by placing two batteries in the forward division
area. The distances between the firing batteries within

*[ the division area, while not quite satisfying the mutual

support criterion, are well within overlapping fire

distance.

B.3. SITE SELECTION CONSTRAINTS

Doctrinal objectives, weapon system requirements, and

available terrain all serve to significantly limit the

available firing battery sites. We have chosen to model

the site selection task as the constrained choice of

- .-weighted site alternatives. Hawk system requirements and

the available terrain dictate which points on the division

* .-* map are possible candidates, while doctrinal objectives

provide the means to weigh each candidate. Having weighed

each site, the site selection task reduces to choosing the

combination of sites with the best composite score.

We have two methods of constraining the site

selection process: identifying possible candidates and

weighing the chosen candidates. A primary goal of

simulator development is to provide user transparency

(making the decision process understandable to the

real-world expert). Therefore, the identification and

136
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weighing of candidate sites in the simulator should

directly relate to the corresponding process performed by

the human expert.

In SAMPLE, candidate identification is constrained in

two ways. The first is procedural, in that certain

portions of the division area are not scanned by the task

algorithm; for example, the area within eight kilometers

of the FEBA is unsafe to the extent that firing units are

4.not allowed in that area. Also, in the SAMPLE task

algorithm, firing units are constrained to lie within the

supported division area. The second way identification is

constrained is symbolic, in that only "usable" sites are

solicited (from the mapreader) as candidates. By making

the determination of "usable site" in the mapreader,

changes in the definition of usable will not affect the

Hawk commander behaviors.

4 Having determined a possible list of candidates, the

problem of weighing the candidates remains. In SAMPLE,

this weighing process consists of three steps:

1. For each candidate site, compute a constraint metric
for each constraint.

2. Determine the constraint classes based on the values of
the metrics.

*3. Combine the classes into a score for each candidate.

B-7
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Constraints. The single-site constraints incorporated

into tne SAMPLE task algorithm are:

1. Projection.
2. Adjacency -- mutual support between adjacent

divisions' firing units.
3. Safety.
4. Accessibility -- nearness to usable roads.
5. Optimality -- balanced placement of firing units.
6. Masking -- dominance of terrain with respect to

surrounding area.

Additionally, because the overall deployment plan has

three sites, support constraints between firing units are

included.

Metrics. Metrics provide a numerical value that can be

used to measure the relative "worth" of a particular

candidate.

Desired values of projection and adjacency are

provided by the user as a part of the scenario definition;

the associated metrics simply measure whether these

desired values are met by a given site. In both cases,

the metric is the ratio of the actual value (based on the

candidate's location) to the desired value.

The safety metric is the distance of the candidate

from the FEBA, and the accessibility metric is the

distance between the candidate and the nearest road

accessible by wheeled vehicles.

B-8
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In the absence of other constraints, the balance

-' . objective would yield a symti deployment pattern of

firing units: the forward firing units would be located a

quarter division-width from the division edges, and the

rear firing unit would be located on the halfway line. The

optimality metric used is the x-coordinate displacement

from the balanced configuration.

Emplacement doctrine specifies that the most dominant

terrain available is to be used for firing site locations.

The masking metric is a simple count of the number of

hills that are higher than, and forward of, the candidate

site. For firing units within a division, the support

metric is the distance between units expressed as a

percentage of the planning radius.

Constraint Classes. Once the constraint metrics have been

calculated, the value is used to place the candidate into

one of four constraint "classes". These classes are used

to define candidate sets that are roughly equivalent.

Candidates falling into the same class cannot be

distinguished as being "better" or "worse"; it is left to

other constraints to make the determination. Loosely

speaking, the four classes correspond to heuristic

definitions of "good" through "poor". In a way, these

classes are quite similar to the notion of "fuzzy sets".

a We believe that this abstraction to four levels
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contributes significantly to the transparency of the task

algorithm.

Scoring. The final step in the selection process is the

scoring of each site in the candidate list. Individual

-sites are first scored according to the single-site

constraint classes just described. Next, forward sites

from each side are considered as pairs and the support

class of the pair is incorporated. Finally, the pair with

the best score is chosen and the result reported.

The constraint classes are assigned an integer value

between zero and three with zero representing the best

class. The score is computed as a weighted sum of

constraint classes.

The six single-site constraints are divided into two

1-groups: projection and adjacency are "1miss ion"

constraints (supplied by the user), while the rest are

"supplemental" constraints. The class weights were chosen

so that changing a mission constraint from one class to

the next poorer class is "worse" than the worst-case sum

of any three of the other constraints. Since the worst

* value of any constraint is three, the mission constraint

classes are multiplied by a weight of ten before summing

to yield the final single-site score. (Three supplemental

constraints can change from class "good" to "poor",

B - 10
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resulting in a value change of nine, and still be less

* * severe than a change of one mission constraint class,

NNW which would result in a value change of ten.)

The pair score is computed as the sum of the

single-site scores of the two candidates, plus twice the

support constraint class of the pair.

We believe that this method of calculating pair

scores is adequate to model the decision heuristics used

by the real-world experts, and simple enough to allow easy

understanding of the implementation. Additionally, the

weights and class values can easily be adjusted to suit

the experiences of the experts for a more accurate

representation of the relative importance of the various

constraints.
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APPENDIX C

SAMPLE USER'S GUIDE

C.l. INTRODUCTION

This appendix is intended to help the SAMPLE user

interact with the planning task simulator described in the

thesis body. major topics include how to run the

simulator, interfacing with SAMPLE, and the directory

structure of the complete simulator system,

Prior to running the system, the user should be

familiar with the framework and content of the system

structure. As a minimum, the user should read Section

N 5.5, "User Behavior Specification," Appendix B, "Site

Selection Objectives," and Appendix E, "Using Terrain Data

in a Planning Simulation."

Because this system is intended to be used as a

testbed for further research, user comments are earnestly

solicited. Suggestions, criticisms, comments, questions,

or identification of bugs should be addressed to the

Artificial Intelligence Laboratory, Department of

Electrical Engineering, Air Force Institute of Technology,

Wright-Patterson AFB, Ohio, 45433.
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C.2. RUNNING SAMPLE

SAMPLE is implemented on the AFIT Scientific Support

Computer (a VAX-ll/780) running the UNIX operating system.

To run SAMPLE, follow these steps:

1. Log on to the system.
2. In response to the shell prompt,

type: cd /usr/ai/ROSS/Sample
3. Type: sample
4. In response to the "->" prompt,

type: (load 'continue)

At this point, SAMPLE is running. After a particular

simulation has been completed, the system will prompt the

user with: "Do you wish to continue (yes or no)?" An

answer of "no" will terminate the session and put the user

e back in the UNIX shell; "yes" will initiate a new

simulation with a different hawk battalion.

C.3. INTERFACING WITH SAMPLE

C.3.1. Input Formatting

The user interacts with SAMPLE in two ways--through

defining the simulator scenario, and reading the map for

the micro-expert. Before discussing the user interaction,

the required input formats will be described.

General. User input is passed to the simulator

through the Franz Lisp "reader", which restricts the
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possible inputs somewhat. For example, commas have a

special meaning to the reader and must be avoided. Also,

input is not recognized until a carriage return is typed;

this means that mistakes can be corrected using

"backspace", but only before the carriage return is typed.

The reader incorporates a type-ahead buffer, so that

future inputs may be typed in before the present input is

processed. Finally, the reader expects input in the form

of Lisp "s-expressions." Briefly, an s-expression is

either an "atom" or a "list." An atom is either an

integer, a floating-point number (which contains a decimal

point), or a sequence of characters made up of the letters

a-z, the digits 0-9, and the character "-". A list is

recursively defined as a sequence of s-expressions

enclosed in parentheses. For a further discussion of

reader syntax, the user is referred to the Franz Lisp

Manual (Foderaro, 1982).

Expected Inputs. For our purposes, most inputs will

either be integers or a list of two integers. Locations

are entered as a list consisting of the x-coordinate and

the y-coordinate; for example, "(-12 -34)<CR>", where the

<CR> denotes the carriage return. Note that the list

elements are enclosed in parentheses and that commas are

not used. Other inputs will either be integers, a

"yes<CR>", or a "no<CR>".
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Input Diagnostics. During the scenario definition

phase, a limited amount of error checking is done. This

will allow recovery from certain classes of input errors.

However, violation of reader syntax will cause the system

to enter an error condition, effectively ending the

session. An error condition is identified by an error

message followed by a *(1>:" prompt; typing "(exit)<CR>"

will return the user to the UNIX shell. No error checking

is done during the map-reading phase; therefore, caution

4. is advised when entering map data.

C.3.2. Defining the Scenario

As given in Chapter Five, the scenario definition

includes specifying the values of the projection and

adjacency constraints, the width of the supported

division, and the locations of friendly air defense units.

After a brief introductory message, the system will

begin prompting the user for information. The first

prompt the user gets is "Enter desired number of hawks in

the air defense group (3-7)." The "(3-7)" signifies that

the expected response to this prompt is a number between

three and seven. Inputs outside of this range are

"forced" to the nearest boundary value; for example, if

the user inputs "10", then the value used by the system
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will be seven (the largest allowable value). Three is the

minimum allowed value because the selection algorithm used

-q assumes that the simulated division is flanked on both

sides. The upper bound of seven was chosen arbitrarily;

values larger than three allow multiple simulations during

a single run, but slow the system response time.

The next prompt the user gets is that for the

adjacency constraint: "Enter desired adjacency constraint

(70-130)." The value of this constraint is the maximum

allowed separation between firing units of adjacent

V. divisions, expressed as a percentage of the scenario

planning radius. The significnce of this constraint, as

well as the projection constraint, is covered in Appendix

B, "Site Selection Objectives." At this time, it is

sufficient to note that lower values of the adjacency

constraint produce stronger constraints (i.e., constraints

that are harder to meet). Again, if the user attempts to

enter a numeric value outside of the given range, the

value is set to the nearest extreme.

The third prompt is that for the projection

constraint: "Enter desired projection constraint (5-12)."

The value of this constraint is the minimum allowed radar

projection past the FEBA, expressed in kilometers. In

this case, smaller values yield stronger constraints.
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The next system output is not a request for input,

but a status message: "<creating air defense group>." At

this point, the simulator is creating and intializing the

dynamic actor instances that make up an air defense group

of the specified size. Depending on system load, this may

take a while, so the message provides assurance that the

system is still running.

The next prompt is for the particular battalion to be

simulated. The user is first reminded that only

"interior" battalions may be simulated: "Currently, only

those battalions with adjacent battalions on each side may

be simulated. Which hawk would you like simulated (2-i)?"

C Here, the "i" stands for one less than the number of hawks

in the air defense group.

The division width is prompted for next: "Enter the

division width in km (30-60)." The emplacement algorithm

used assumes a rectangular division area 60 km deep;

therefore, the division width completely specifies the

division area. Typical division widths are about 45 km,

with the larger widths yielding stronger constraints.

Finally, the locations of friendly air defense

units--the Hawk batteries of adjacent divisions and the

supported division's Chaperral/Vulcan (C/V) battalion

headquarters--are prompted for. All locations are with
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respect to a "virtual" coordinate system, with the origin

- at the intersection of the FEBA and the left edge of the

division. The x-axis coincides with the FEBA (increasing

x towards the right edge), and the y-axis coincides with

the left edge (increasing y away from the division rear).

Under this system, the supported division area always lies

in the fourth quadrant-of a Cartesian coordinate system.

At this time, the translation of map coordinates to

virtual coordinates is the responsibility of the user.

While making the map-reading process somewhat more

difficult, the use of virtual coordinates allows for the

task algorithm to be developed independently of a

particular cartographic system. Also, quite a bit of

insight into the decision process can be gained by using

"development" terrain (terrain data invented by the

designer simply to exercise the system); in this case, the

use of other coordinates introduces needless complication.

The values of the friendly locations are

unrestricted, but certain values may result in constraints

that are impossible to satisfy. Typical values for the

siblings' locations are from 8-15 km from the division

boundaries, with greater values resulting in stronger

constraints that are more difficult to meet. The C/V

battalion headquarters is usually located near the center

of the division area. While the Hawk batallion

headquarters is colocated with the C/V headquarters if
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possible, the C/V location does not contribute any

additional constraint to the algorithm.

Table C-i summarizes the components of the scenario

definition.

Table C-I. Scenario Definition Components

1 Minimum 1 Maximum 1 Solution difficulty

Component 1 allowed allowed 1 increases with:

number of hawks 1 3 7 N/A

projection (km) # 5 1 12 1 increasing values

adjacency 1%) 70 1 130 1 decreasing values

width (km) 30 i 60 I increasing values

left adjacent 1 decreasing x,
Hawk battery 1N/A N/A I decreasing y

right adjacent increasing x,
Hawk battery N/A 1 N/A 1 decreasing y

C/V headquarters 1 N/A N/A N/A

C.3.3. Map Reading

The user is responsible for the following map reading
functions:

1. Determining how many usable and unusable
hills are in a specified region.

2. Determining hill parameters, to include
height, location, and the location of the
nearest road.

3. Determining the minimum and maximum
elevations in a given region.
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* Definitions.

Hill: for our purposes, a hill is a local maximum
* in the division area elevations. A hill is

usable if
(a) the local gradient does not exceed

15 degrees,
(b) it is in "relatively open" terrain

(we interpreted this as ruling out
cities and dense forest), and

(c) it contains sufficient room on its
forward slope to house a firing
platoon (400 by 400 meters).

Elevation: the value of the elevation of the local
maximum entered as an integral number of

* meters.

Hill location: the virtual coordinate pair defining
the location of the local maximum. Locations
should be entered to the nearest tenth of a
kilometer.

Location of nearest road: the location of the
nearest road "accessible" from the local
maximum. A road is accessible if it does
not require crossing an unbridged river or
"impassable" symbol on the map.

Minimum elevation: the value of the smallest
elevation contour.

Maximum elevation: the value of the largest
elevation contour.

C.4. DIRECTORY STRUCTURE

Figure C-1 shows the UNIX file directory structure of the

complete simulator system.
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Sample

I I I
Source Results Terrain

Figure C-1. UNIX Directory Structure.

The Sample directory contains the object files and

support files necessary for simulator operation. The

Source directory contains the ROSS source code for the

various actors, while the Results directory contains

several complete scripts of example SAMPLE sessions. The

Results directory of the AFIT simulator will also contain

a "history" file that documents system changes.

As a prospective user will soon find, the map reading

phase of the simulation can become quite tedious,

'4 especially if real terrain maps are being used. For this

'4reason, the Terrain directory contains files of

apseudomaps"1-ists of hill parameters obtained from an

actual 1:50,000 scale map of the East/West German border.

The map used covered about 22 by 20 kilometers. Also

contained in the Terrain directory are source files

containing "helper"m  functions for organizing the

pseudomaps into a form that the user can more readily use

during a simulator session.
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APPENDIX D

PLANNING TASK SIMULATOR

DESIGNER'S GUIDE

D.l. INTRODUCTION

The purpose of this appendix is to aid future

simulator designers in the development of planning task

simulators similar to SAMPLE. Prospective designers

should be familiar with the ROSS language in general and

our thesis goals and assumptions in particular; knowledge

of the Lisp programming language is essential for a

comprehensive understanding of the system actor and SAMPLE

actor code. We therefore suggest that the designer have

the ROSS and Lisp manuals available; a copy of the SWIRL

(Simulating Warfare in the ROSS Language) manual would

also be helpful. SWIRL is an air battle simulator

developed at RAND, and it provides specific guidance on

simulator development as well as illustrating ROSS

programming techniques.
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D.2. DESIGN CONVENTIONS

* . Much of the basic information in this section is

drawn from the ROSS and SWIRL manuals; our suggestions are

based on our experiences with ROSS and our goal of

providing a transparent and flexible example system. Areas

covered include reserved symbols, and hints on creating

transparent code.

D.2.1. ROSS Reserved Symbols.

The only reserved keywords in ROSS are "ask", "tell"

(which are equivalent), and "myself."ROSS is embedded in

Lisp, and ROSS commands can be freely intermixed with Lisp

423 function calls. ROSS commands always begin with either

ask or tell. "Myself" is a symbol whose value is the

actor which is currently executing a behavior.

The characters ! & > + are defined as read

character macros in the ROSS read syntax table. ROSS is a

non-evaluating language, in contrast to the host language

(Franz Lisp). The character "!" signals that the

following s-expression (atom or list) be evaluated and the

returned value substituted into the command. The

. character "&" evaluates the following s-expression and

"splices" the returned value into the command (that is,

enclosing parentheses are removed).

. D- 2

4 'Q4*0*



The characters ">" and "+" are pattern-matching

4t" symbols. ">" will match any non-nil s-expression, while

"+" will match any non-nil sequence of s-expressions.

Also, if an atom immediately follows one of these symbols,

the value of the atom is set to the matched symbol(s). For

example, the atom "Clyde" would match the pattern variable

V ">person"; furthermore, the value of the symbol "person"

would be set to "Clyde."

The character "" serves as the abbreviate macro; the

abbreviation package will be covered in the next section.

• ..

P D.2.2. Code Transparency

Several features of the ROSS language contribute to

the transparency of the developed code. First, Franz Lisp

supports symbol names of arbitrary length. This means

that names can be chosen that are meaningful to the

potential user.

The hyphen character is allowed as part of symbol

names, allowing the concatenation of terms into

descriptive labels. For example, there is no need to use

the name "hcmd" when "hawk-commander" will improve
readability.

.- D 3a-.,D -

. . .. . * - " ' --" - : : ' * .* a. "4. i K A K-;*- ? , ._ . .. '. '-' ' '" ." .° ' " '" ' "



.. S A * Y7% 7 a7

Second, the pattern matching abilities of ROSS

extends this capability to using messages that read much

like English. For example, messages such as "choose

forward locations using terrain-free rules" can be used,

even though the only significant words are "choose",

"forward", and "terrain-free" which form the template that

the message must match. The use of the abbreviation

package further increases the code transparency. This

package allows the designer to define abbreviations for

awkward phrases and constructs. Without abbreviations,

the only way for a leading actor to access its personal

memory would be with a message of the form: (ask 1 (ask

!myself recall your memory) fetch <something>). By

defining the proper abbreviation, the message becomes

* (-fetch <something>); obviously, the second form is much

more desirable and readable.

Third, Lisp code can be made more readable by the use

of the "if" and "loop" macro packages (supplied with the

ROSS tape). These packages replace raw Lisp functions

such as cond, do, and prog statements. For example,

(cond ((eq test t) (do whatever))

(t (do the other thing)))

can be replaced by

(if (eq test t)
then (do whatever)
else (do the other thing))

D 4.
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Similar gains in readability may be obtained by using

the loop macro package.

Beyond these macro packages, it is possible to

increase the friendliness of Lisp code. For example, the

code fragment

(if (setq result (cadddr lis))
then (use result)
else (return))

may be somewhat obscure at first. Clearer is

(setq result (nthelem 4 lis))
(if (not (null result))

then (use result)
else (return nil))

The second version does not require the user to

figure out that "cadddr" references the fourth element of

a list, or to remember that a "return" with no argument

returns a value of nil. Also, the second version

explicitly states that any non-nil value of "result" is

A sufficient to trigger the "then" clause, and separates

computation of "result" from its use in the test clause of

*the "if" statement.

.5
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APPENDIX E

USING TERRAIN IN A

PLANNING SIMULATOR

All battlefield commanders must deal with a common

major constraint on their glans: battlefield solutions

must be shaped by the terrain. The commander forms his

assessments with a map, supplemented with intelligence and

reconnaissance data, and sometimes an on-site survey.

A map that is useful for a broad range of commanders

(tank, SAM, infantry, etc) requires representation of a

variety of data:

1. Height. Height of the land (relative to some
benchmark) with sufficient resolution for the
commander to discern dangerously sloped or impassable
areas.

2. Roads.
3. Waterways.
4. Populated areas.
5. Ground cover. Rubble, sand, swamp, snow (seasonal),

etc.
. 6. Foilage. Brush, forest, etc.

E -
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The digital analogue to the commander's map must

represent the same generally useful data as the physical

map. This general military map representation (GMMR)

should contain:

1. Height. Height of the land with sufficient resolution
for an automated map-reader to discern dangerously
sloped or impassable areas. one representation might
be: the mean altitude over 100 meter square areas
(tiles).

2. Roads. Roads can be represented as a series of
points, a set of vectors or line segments, or simply
by marking each tile as passable or impassable. The
latter representation however, is only valid in terms
of the question "Impassable by whom?", so it is not
general.

3. Waterways. Same as roads.
4. Populated areas.
5. Ground cover. Rubble, sand, swamp, snow (seasonal),

etc.
6. Foilage. Brush, forest, etc.

C The GMMR provides the repository for the information

needed by any battlefield commander, real or modelled.

However, to be useful in planning a task, it must be

viewed in term of the question "What features apply to the

task at hand?" The task determines the necessary features

that must be abstracted from the GMMR. Each commander

utilizes a handful of abstractions plus some detailed

knowledge provided by reconnaisance and his on-site survey

to reason about the terrain.

Many battlefield planning situations are concerned

with the dominance of the terrain. Dominant terrain is

conveniently described as "big hills": areas of land that

~ overlook the surrounding region. From the vantage point

E -
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of dominant terrain, the commander and his resources (such

as radar) have the capability of "seeing" the approach of

the enemy at a distance. The dominance provides the

commander with a view over other terrain that would mask

his view if he had a lower vantage point. To some degree,

he can also view areas behind low-lying hills and in

valleys.

We have found, through examination of the terrain in

Central Europe, that the breadth of a dominant feature is

roughly one kilometer. This implies a useful

representation of describing terrain using blocks with

sides if one kilometer. A block will contain one of four

* types of terrain:

- 1. Flat.
2. Low, rolling hills.
3. A dominant mass with multiple peaks.
4. A single dominant hill.

;5 The GMMR we have developed consists of one kilometer

square blocks, with each block containing 100 tiles. As

described above, a tile is 100 meters on a side. A map of

this nature, stored in a data-base, would provide an

automated map-reader with the resolution necessary to

determine and classify the terrain features. The

resolution of the tiles allows the map-reader to determine

the gradients of the land. The resolution of the blocks

provides the simulated commander with an abstraction of

the terrain in terms of dominance.
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The abstraction can be used to describe

two-dimensionally the areas visible from the site and

those areas masked by other terrain. The third dimension,

elevation with respect to the site, is represented by the

following heuristics:

1. Masking decreases, as the elevation angle increases,
for the simple reason that gross terrain features get
smaller at the top. The inverse is also true,
masking increases with decreasing elevation angles.

2. Look-down capability is enhanced with larger
(negative) elevation angles. This is the ability to
see behind features due to the viewer's higher
vantage point.

Populated areas, ground cover, and foilage can be

represented at the same or lower resolution than height

information, due to the dynamics of encroachment. The

edges of the region are fluid, and boundary conditions

around the region are not much different than conditions

within, in terms of mobility of the commander's assets. A

low resolution representation will suffice. Additionally,

the commander does not make detailed judgements of cover

(for camouflage and shielding) from his map. Rather, he

notes the fact that the areas of cover exist, and makes

the specific decisions opportunistically during the

occupation or the battle.
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